Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(18): 7947-7957, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38676647

RESUMO

Volatility of organic aerosols (OAs) significantly influences new particle formation and the occurrence of particulate air pollution. However, the relationship between the volatility of OA and the level of particulate air pollution (i.e., particulate matter concentration) is not well understood. In this study, we compared the chemical composition (identified by an ultrahigh-resolution Orbitrap mass spectrometer) and volatility (estimated based on a predeveloped parametrization method) of OAs in urban PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) samples from seven German and Chinese cities, where the PM2.5 concentration ranged from a light (14 µg m-3) to heavy (319 µg m-3) pollution level. A large fraction (71-98%) of compounds in PM2.5 samples were attributable to intermediate-volatility organic compounds (IVOCs) and semivolatile organic compounds (SVOCs). The fraction of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs) decreased from clean (28%) to heavily polluted urban regions (2%), while that of IVOCs increased from 34 to 62%. We found that the average peak area-weighted volatility of organic compounds in different cities showed a logarithmic correlation with the average PM2.5 concentration, indicating that the volatility of urban OAs increases with the increase of air pollution level. Our results provide new insights into the relationship between OA volatility and PM pollution levels and deepen the understanding of urban air pollutant evolution.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poluição do Ar , Espectrometria de Massas , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Volatilização , Compostos Orgânicos/análise , China , Compostos Orgânicos Voláteis/análise
2.
Carbohydr Polym ; 326: 121623, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142100

RESUMO

A novel cellulose nanofibril/titanate nanofiber modified with CdS quantum dots hydrogel (CTH) was synthesized as an effective, stable, and recyclable photocatalytic adsorbent using cellulose nanofibril (CN), titanate nanofiber (TN), and CdS quantum dots. Within the CTH structure, CN formed an essential framework, creating a three-dimensional (3D) porous structure that enhanced the specific surface area and provided abundant adsorption sites for Cr(VI). Simultaneously, TN modified with CdS quantum dots (TN-CdS) served as a nanoscale Z-type photocatalyst, facilitating the efficient separation of photoinduced electrons and holes, further increasing the photocatalytic efficiency. The morphological, chemical, and optical properties of CTH were thoroughly characterized. The CTH demonstrated the maximum theoretical adsorption capacity of 373.3 ± 14.2 mg/g, which was 3.4 times higher than that of CN hydrogel. Furthermore, the photocatalytic reduction rate constant of the CTH was 0.0586 ± 0.0038 min-1, which was 6.4 times higher than that of TN-CdS. Notably, CTH displayed outstanding stability, maintaining 84.9 % of its initial removal efficiency even after undergoing five consecutive adsorption-desorption cycles. The remarkable performance of CTH in Cr(VI) removal was attributed to its 3D porous structure, comprising CN and TN-CdS. These findings provide novel insights into developing a stable photocatalytic adsorbent for Cr(VI) removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA