Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175374

RESUMO

Marine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf. Lyngbya sp., a small quantity of a new cyclopropane-containing molecule, benderadiene (2), and lyngbyoic acid (1) were purified and characterized using spectroscopic methods. Using live reporter quorum-sensing (QS) inhibitory assays, based on P. aeruginosa PAO1 lasB-gfp and rhlA-gfp strains, both compounds were found to inhibit QS-regulated gene expression in a dose-dependent manner. In addition to lyngbyoic acid being more active in the PAO1 lasB-gfp biosensor strain (IC50 of 20.4 µM), it displayed anti-biofilm activity when incubated with wild-type P. aeruginosa. The discovery of lyngbyoic acid in relatively high amounts provided insights into its ecological significance as a defensive allelochemical in targeting competing microbes through interference with their QS systems and starting material to produce other related analogs. Similar strategies could be adopted by other marine cyanobacterial strains where the high production of other lipid acids has been reported. Preliminary evidence is provided from the virtual molecular docking of these cyanobacterial free acids at the ligand-binding site of the P. aeruginosa LasR transcriptional protein.


Assuntos
Cianobactérias , Lyngbya , Lyngbya/metabolismo , Simulação de Acoplamento Molecular , Biofilmes , Percepção de Quorum , Cianobactérias/metabolismo , Ciclopropanos/farmacologia , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética
2.
Methods Mol Biol ; 2691: 3-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355533

RESUMO

Identification of unique gene markers of normal and cancer stem cells is an effective strategy to study cells of origin and understand tumor behavior. Lineage tracing experiments using the Cre recombinase driven by a stem cell-specific promoter in the CreERT2 reporter mouse model enables identification of adult stem cells and delineation of stem cell activities in vivo. In our recent research on the mouse stomach, Iqgap3 was identified as a homeostatic stem cell marker located in the isthmus of the stomach epithelium. Lineage tracing with the Iqgap3-2A-CreERT2;Rosa26-LSL-tdTomato mouse model demonstrated stem cell activity in Iqgap3-expressing cells. Using the Iqgap3-2A-CreERT2 mouse model to target oncogenic KrasG12D expression to Iqgap3-expressing cells, we observed the rapid development of precancerous metaplasia in the stomach and proposed that aberrant Iqgap3-expressing cells may be critical determinants of early carcinogenesis. In this chapter, we detail a lineage tracing protocol to assess stem cell activity in the murine stomach. We also describe the procedure of inducing KrasG12D expression in Iqgap3-expressing homeostatic stem cells to explore their role as cells of origin and to trace the early cellular changes that precede neoplastic transformation.


Assuntos
Células-Tronco Adultas , Neoplasias Gástricas , Camundongos , Animais , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Gástricas/patologia , Mucosa Gástrica/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Adultas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA