Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chirality ; 31(11): 992-1000, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31468590

RESUMO

Four Ala-Ala dipeptides with a perfluoroalkyl chain at the N-terminal were synthesized. They were able to self-assemble into helical nanofibers and/or twisted nanobelts in a mixture of DMSO/H2 O. The handedness of nanofibers and nanobelts was controlled by the chirality of the alanine at the N-terminal. The stacking handedness of the phenylene groups and the helicity of the perfluoroalkyl chain were studied using circular dichroism spectroscopy and vibrational circular dichroism, respectively. The chirality of the alanine at N-terminal controlled the stacking handedness of the neighboring phenylene groups. Moreover, due to the low potential barrier between M- and P-helices of the perfluorocarbon chain, the handedness of the organic self-assemblies eventually controlled the helicity of the perfluorocarbon chain. X-ray diffraction indicated that a lamellar structure was formed by the dimers of the dipeptides.


Assuntos
Dipeptídeos/química , Fluorocarbonos/química , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
2.
Soft Matter ; 14(30): 6353-6359, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027973

RESUMO

C17H35CO-l-Val-l-Ala and C17H35CO-d-Val-d-Ala sodium salts can form physical gels in water, and self-assemble into right- and left-handed twisted nanoribbons, respectively. FT-IR and 1H NMR spectra indicate that the H-bonding between the neighboring valine residues and electrostatic interactions of carboxylate groups play important roles in the formation of helical nanoribbons. Circular dichroism characterization and theoretical chemical calculations indicate that the dipeptide segments pack in a helical manner. X-ray diffraction patterns and theoretical chemical simulations indicate an interdigitated bilayer structure. The hydrogels exhibit a thixotropic behavior. The twisted nanoribbons are able to align under directional force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA