Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Small ; 18(47): e2203431, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180405

RESUMO

Mesenchymal stem cell (MSC) therapy via intravenous transplantation exhibits great potential for brain tissue regeneration, but still faces thorny clinical translation challenges as the unknown dynamic fate leads to the contentious therapeutic mechanism and the poor MSC viability in harsh lesions limits therapeutic efficiency. Here, a vitality-enhanced dual-modal tracking system is designed to improve engraftment efficiency and is utilized to noninvasively explore the fate of intravenous transplanted human umbilical cord-derived MSCs during long-term treatment of ischemic stroke. Such a system is obtained by bioorthogonally conjugating magnetic resonance imaging (MRI) contrast and near-infrared fluorescence (NIRF) imaging nanoparticles to metabolic glycoengineered MSCs with a lipoic acid-containing extracellular antioxidative protective layer. The dynamic fates of MSCs in multi-dimensional space-time evolution are digitally detailed for up to 28 days using MRI and NIRF imaging equipment, and the protective layer greatly shields MSCs from reactive oxygen spices (ROS) degradation, enhances MSC survival, and engraftment efficiency. Additionally, it is observed that the bioengineered MSCs exhibit dynamic intelligent responses corresponding to microenvironment remodeling and exert enhanced therapeutic effects. This dual-modal tracking system enables long-term tracking of MSCs while improving their viability at the lesion sites, which may serve as a valuable tool for expediting the clinical translation of MSC therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
2.
Acta Pharm Sin B ; 14(3): 1412-1427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486994

RESUMO

Mesenchymal stem cells (MSCs) experience substantial viability issues in the stroke infarct region, limiting their therapeutic efficacy and clinical translation. High levels of deadly reactive oxygen radicals (ROS) and proinflammatory cytokines (PC) in the infarct milieu kill transplanted MSCs, whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs' viability. Based on the intrinsic hormesis effects in cellular biology, we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy. This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer. In this system, extracellular ROS-scavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a micro-livable niche at the level of a single MSC for transplantation. Meanwhile, the infarct's inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing. The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days. This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.

3.
Adv Sci (Weinh) ; 10(34): e2304284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867233

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Long-term changes in the microenvironment of the brain contribute to the degeneration of neurological function following TBI. However, current research focuses primarily on short-term modulation during the early phases of TBI, not on the critical significance of long-term homeostasis in the brain microenvironment. Notably, dysfunction of the glymphatic-lymphatic system results in the accumulation of danger/damage-associated molecular patterns (DAMPs) in the brain, which is regarded as the leading cause of long-term microenvironmental disturbances following TBI. Here, a nanostructure, Nano-plumber, that co-encapsulates the microenvironment regulator pro-DHA and the lymphatic-specific growth factor VEGF-C is developed, allowing for a sustainable and orderly regulation of the microenvironment to promote long-term neurological recovery. Nano-plumber reverses the injury microenvironment by suppressing microglia and astrocytes activation and maintaining reduced activation via enhanced glymphatic-lymphatic drainage, and significantly improves the neurological function of rodents with TBI. This study demonstrates that glymphatic-lymphatic system reconstruction is essential for enhancing long-term prognosis following TBI, and that the Nano-plumber developed here may serve as a clinically translatable treatment option for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Sistema Linfático/metabolismo , Encéfalo/metabolismo , Prognóstico
4.
Nat Commun ; 14(1): 435, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702831

RESUMO

The limited benefits of immunotherapy against glioblastoma (GBM) is closely related to the paucity of T cells in brain tumor bed. Both systemic and local immunosuppression contribute to the deficiency of tumor-infiltrating T cells. However, the current studies focus heavily on the local immunosuppressive tumor microenvironment but not on the co-existence of systemic immunosuppression. Here, we develop a nanostructure named Nano-reshaper to co-encapsulate lymphopenia alleviating agent cannabidiol and lymphocyte recruiting cytokine LIGHT. The results show that Nano-reshaper increases the number of systemic T cells and improves local T-cell recruitment condition, thus greatly increasing T-cell infiltration. When combined with immune checkpoint inhibitor, this therapeutic modality achieves 83.3% long-term survivors without recurrence in GBM models in male mice. Collectively, this work unveils that simultaneous reprogramming of systemic and local immune function is critical for T-cell based immunotherapy and provides a clinically translatable option for combating brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Masculino , Camundongos , Animais , Glioblastoma/patologia , Imunoterapia/métodos , Neoplasias Encefálicas/patologia , Terapia de Imunossupressão , Imunidade , Microambiente Tumoral
5.
J Control Release ; 362: 210-224, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619863

RESUMO

Mesenchymal stem cells (MSCs) exhibited remarkable therapeutic potential in ischemic stroke due to their exceptional immunomodulatory ability and paracrine effect; they have also been regarded as excellent neuroprotectant delivery vehicles with inflammatory tropism. However, the presence of high levels of reactive oxygen species (ROS) and an oxidative stress environment at the lesion site inhibits cell survival and further therapeutic effects. Using bioorthogonal click chemistry, ROS-responsive luteolin-loaded micelles were tethered to the surface of MSCs. As MSCs migrated to the ischemic brain, the micelles would achieve ROS-responsive release of luteolin to protect MSCs from excessive oxidative damage while inhibiting neuroinflammation and scavenging ROS to ameliorate ischemic stroke. This study provided an effective and prospective therapeutic strategy for ischemic stroke and a framework for a stem cell-based therapeutic system to treat inflammatory cerebral diseases.

6.
ACS Nano ; 17(9): 8646-8662, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37099675

RESUMO

Apoptotic vesicles (ApoVs) hold great promise for inflammatory regulation and tissue repair. However, little effort has been dedicated to developing ApoV-based drug delivery platforms, while the insufficient targeting capability of ApoVs also limits their clinical applications. This work presents a platform architecture that integrates apoptosis induction, drug loading, and functionalized proteome regulation, followed by targeting modification, enabling the creation of an apoptotic vesicle delivery system to treat ischemic stroke. Briefly, α-mangostin (α-M) was utilized to induce mesenchymal stem cell (MSC) apoptosis while being loaded onto MSC-derived ApoVs as an anti-oxidant and anti-inflammatory agent for cerebral ischemia/reperfusion injury. Matrix metalloproteinase activatable cell-penetrating peptide (MAP), a microenvironment-responsive targeting peptide, was modified on the surface of ApoVs to obtain the MAP-functionalized α-M-loaded ApoVs. Such engineered ApoVs targeted the injured ischemic brain after systemic injection and achieved an enhanced neuroprotective activity due to the synergistic effect of ApoVs and α-M. The internal protein payloads of ApoVs, upon α-M activation, were found engaged in regulating immunological response, angiogenesis, and cell proliferation, all of which contributed to the therapeutic effects of ApoVs. The findings provide a universal framework for creating ApoV-based therapeutic drug delivery systems for the amelioration of inflammatory diseases and demonstrate the potential of MSC-derived ApoVs to treat neural injury.


Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/tratamento farmacológico , Encéfalo , Isquemia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico
7.
ACS Appl Mater Interfaces ; 14(24): 27743-27761, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35695238

RESUMO

High level of detrimental factors including reactive oxygen species (ROS) and inflammatory cytokines accumulated in the infarct core and their erosion to salvageable penumbra are key pathological cascades of ischemia-reperfusion injury in stroke. Few neuroprotectants can remodel the hostile microenvironment of the infarct core for the failure to interfere with dead or biofunctionally inactive dying cells. Even ischemia-reperfusion injury is temporarily attenuated in the penumbra by medications; insults of detrimental factors from the core still erode the penumbra continuously along with drug metabolism and clearance. Herein, a strategy named "nanobuffer" is proposed to neutralize detrimental factors and buffer destructive erosion to the penumbra. Inspired by neutrophils' tropism to the infarct core and affinity to inflammatory cytokines, poly(lactic-co-glycolic acid) (PLGA) nanoparticles are coated with neutrophil membrane to target the infarct core and absorb inflammatory cytokines; α-lipoic acid is decorated on the surface and cannabidiol is loaded for ROS scavenging and neuroprotection, respectively, to construct the basic unit of the nanobuffer. Such a nanobuffer exerts a comprehensive effect on the infarct area via detrimental factor neutralization and cannabidiol-induced neuroprotection. Besides, the nanobuffer can possibly be enhanced by dynamic ROP (ring-opening-polymerization)-induced membrane cross-fusion among closely adjacent units in vivo. Systematic evaluations show significant decrease of detrimental factors in the core and the penumbra, reduced infarct volume, and improved neurological recovery compared to the untreated group of stroke rats.


Assuntos
Isquemia Encefálica , Canabidiol , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Biomimética , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Canabidiol/uso terapêutico , Citocinas , Infarto , Neurônios/metabolismo , Neutrófilos/metabolismo , Ratos , Espécies Reativas de Oxigênio , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA