Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 50(6): 3581-3592, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35323947

RESUMO

Direct cloning of biosynthetic gene clusters (BGCs) from microbial genomes facilitates natural product-based drug discovery. Here, by combining Cas12a and the advanced features of bacterial artificial chromosome library construction, we developed a fast yet efficient in vitro platform for directly capturing large BGCs, named CAT-FISHING (CRISPR/Cas12a-mediated fast direct biosynthetic gene cluster cloning). As demonstrations, several large BGCs from different actinomycetal genomic DNA samples were efficiently captured by CAT-FISHING, the largest of which was 145 kb with 75% GC content. Furthermore, the directly cloned, 110 kb long, cryptic polyketide encoding BGC from Micromonospora sp. 181 was then heterologously expressed in a Streptomyces chassis. It turned out to be a new macrolactam compound, marinolactam A, which showed promising anticancer activity. Our results indicate that CAT-FISHING is a powerful method for complicated BGC cloning, and we believe that it would be an important asset to the entire community of natural product-based drug discovery.


Assuntos
Produtos Biológicos , Streptomyces , Sistemas CRISPR-Cas , Clonagem Molecular , Família Multigênica , Streptomyces/genética
2.
Proc Natl Acad Sci U S A ; 116(41): 20366-20375, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548381

RESUMO

Streptomycetes serve as major producers of various pharmacologically and industrially important natural products. Although CRISPR-Cas9 systems have been developed for more robust genetic manipulations, concerns of genome instability caused by the DNA double-strand breaks (DSBs) and the toxicity of Cas9 remain. To overcome these limitations, here we report development of the DSB-free, single-nucleotide-resolution genome editing system CRISPR-BEST (CRISPR-Base Editing SysTem), which comprises a cytidine (CRISPR-cBEST) and an adenosine (CRISPR-aBEST) deaminase-based base editor. Specifically targeted by an sgRNA, CRISPR-cBEST can efficiently convert a C:G base pair to a T:A base pair and CRISPR-aBEST can convert an A:T base pair to a G:C base pair within a window of approximately 7 and 6 nucleotides, respectively. CRISPR-BEST was validated and successfully used in different Streptomyces species. Particularly in nonmodel actinomycete Streptomyces collinus Tü365, CRISPR-cBEST efficiently inactivated the 2 copies of kirN gene that are in the duplicated kirromycin biosynthetic pathways simultaneously by STOP codon introduction. Generating such a knockout mutant repeatedly failed using the conventional DSB-based CRISPR-Cas9. An unbiased, genome-wide off-target evaluation indicates the high fidelity and applicability of CRISPR-BEST. Furthermore, the system supports multiplexed editing with a single plasmid by providing a Csy4-based sgRNA processing machinery. To simplify the protospacer identification process, we also updated the CRISPy-web (https://crispy.secondarymetabolites.org), and now it allows designing sgRNAs specifically for CRISPR-BEST applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Streptomyces coelicolor/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Plasmídeos
3.
Appl Microbiol Biotechnol ; 104(1): 225-239, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31788711

RESUMO

Actinobacteria are one of the most important sources of pharmaceutically valuable and industrially relevant secondary metabolites. Modern genome mining reveals that the potential for secondary metabolite production of actinomycetes has been underestimated. Recently, the establishment of CRISPR/Cas9-based genetic manipulation approaches in actinomycetes opened a new era for genome engineering of this type of organism. Compared with the traditional methods, the application of CRISPR/Cas9 shows several advantages in actinomycetes including higher efficiency and ease of operation. However, the screening process for the correctly edited mutants and the plasmid curing are still time- and labor-intensive. To address this problem, we developed an updated version of the CRISPR/Cas9 genome editing system for actinomycetes, based on two chromogenic reporter systems (GusA and IdgS). Our system facilitates both processes of positive clone screening and plasmid curing. Here, we demonstrate by three case studies in both model actinomycetes and non-model actinomycetes that this system is faster and more efficient. We performed the deletion of one single gene, actIORFI (SCO5087 of the actinorhodin gene cluster) in Streptomyces coelicolor M145, one small-size (5.5 kb) gene cluster (orange-pigmented carotenoid gene cluster), and one relatively large-size (61 kb) gene cluster (abyssomicin gene cluster) in Verrucosispora sp. MS100137. The results presented in this study indicate that this updated CRISPR/Cas9 system employing chromogenic reporters is versatile and broadly applicable in genome engineering of actinomycetes, not only for the largest genus Streptomyces.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Genes Reporter , Genoma Bacteriano , Streptomyces coelicolor/genética , Compostos Cromogênicos , Ensaios de Triagem em Larga Escala , Família Multigênica , Plasmídeos/genética
4.
Nat Prod Rep ; 36(9): 1262-1280, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548045

RESUMO

Covering: up to February, 2018 This review briefly introduces and summarizes current knowledge about the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) - CRISPR/Cas system and how it was engineered to become one of the most important and versatile genome editing techniques that are currently revolutionizing the whole field of molecular biology. It aims to highlight and discuss the applications and remaining challenges of CRISPR/Cas (mainly focusing on CRISPR/SpCas9)-based genome editing in natural product discovery. The organisms covered include bacteria such as Streptomyces, Corynebacteria, and Myxobacteria; filamentous fungi such as Aspergillus, Beauveria, and Ganoderma; microalgae; and some plants. As closing remarks, the prospects of using CRISPR/Cas in natural product discovery will be discussed.


Assuntos
Produtos Biológicos/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Genoma Bacteriano/genética , Genoma Fúngico/genética , Engenharia Metabólica/métodos
5.
PLoS Biol ; 11(3): e1001525, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555196

RESUMO

Phenotypic transitions play critical roles in host adaptation, virulence, and sexual reproduction in pathogenic fungi. A minority of natural isolates of Candida albicans, which are homozygous at the mating type locus (MTL, a/a or α/α), are known to be able to switch between two distinct cell types: white and opaque. It is puzzling that white-opaque switching has never been observed in the majority of natural C. albicans strains that have heterozygous MTL genotypes (a/α), given that they contain all of the opaque-specific genes essential for switching. Here we report the discovery of white-opaque switching in a number of natural a/α strains of C. albicans under a condition mimicking aspects of the host environment. The optimal condition for white-to-opaque switching in a/α strains of C. albicans is to use N-acetylglucosamine (GlcNAc) as the sole carbon source and to incubate the cells in 5% CO2. Although the induction of white-to-opaque switching in a/α strains of C. albicans is not as robust as in MTL homozygotes in response to GlcNAc and CO2, opaque cells of a/α strains exhibit similar features of cellular and colony morphology to their MTL homozygous counterparts. Like MTL homozygotes, white and opaque cells of a/α strains differ in their behavior in different mouse infection models. We have further demonstrated that the transcriptional regulators Rfg1, Brg1, and Efg1 are involved in the regulation of white-to-opaque switching in a/α strains. We propose that the integration of multiple environmental cues and the activation and inactivation of a set of transcriptional regulators controls the expression of the master switching regulator WOR1, which determines the final fate of the cell type in C. albicans. Our discovery of white-opaque switching in the majority of natural a/α strains of C. albicans emphasizes its widespread nature and importance in host adaptation, pathogenesis, and parasexual reproduction.


Assuntos
Candida albicans/metabolismo , Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Animais , Evolução Biológica , Northern Blotting , Candida albicans/genética , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Genes Fúngicos Tipo Acasalamento/fisiologia , Genótipo , Masculino , Camundongos , Repetições de Microssatélites/genética
6.
Mol Microbiol ; 89(4): 732-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23808664

RESUMO

The human fungal pathogen Candida albicans has at least two types of morphological transitions: white to opaque cell transitions and yeast to hyphal transitions. Opaque cells have historically not been known to undergo filamentation under standard filament-inducing conditions. Here we find that Bcr1 and its downstream regulators Cup9, Nrg1 and Czf1 and the cAMP-signalling pathway control opaque cell filamentation in C. albicans. We have shown that deletion of BCR1, CUP9, NRG1 and CZF1 results in opaque cell filamentation under standard culture conditions. Disruption of BCR1 in white cells has no obvious effect on hyphal growth, suggesting that Bcr1 is an opaque-specific regulator of filamentation under the conditions tested. Moreover, inactivation of the cAMP-signalling pathway or disruption of its downstream transcriptional regulators, FLO8 and EFG1, strikingly attenuates filamentation in opaque cells of the bcr1/bcr1 mutant. Deletion of HGC1, a downstream gene of the cAMP-signalling pathway encoding G1 cyclin-related protein, completely blocks opaque cell filamentation induced by inactivation of BCR1. These results demonstrate that Bcr1 regulated opaque cell filamentation is dependent on the cAMP-signalling pathway. This study establishes a link between the white-opaque switch and the yeast-filamentous growth transition in C. albicans.


Assuntos
Candida albicans/citologia , Candida albicans/genética , AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Proteínas Fúngicas/genética , Deleção de Genes , Hifas/citologia , Hifas/genética
7.
Fungal Genet Biol ; 62: 71-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161730

RESUMO

Candida albicans, a major opportunistic fungal pathogen of humans, can spontaneously undergo white-to-opaque switching, a prerequisite of mating. The phenotypes of white and opaque cells are heritable and bistable. The zinc-finger transcription factor Wor2 (White Opaque Regulator 2) has previously been identified as an important regulator of white-to-opaque switching. Deletion of WOR2 locks cells in the white phase when cultured on media containing glucose as the sole carbon source. In this study, we report that N-acetylglucosamine (GlcNAc) can induce white-to-opaque switching in the wor2/wor2 null mutant and stabilize the opaque phenotype of C. albicans. Moreover, overexpression of RAS1V13 (the activating form of RAS1) hypersensitizes white cells of the wor2/wor2 mutant to GlcNAc. These results suggest that Wor2 is not required for opaque cell formation at least under some culture conditions. Therefore C. albicans cells may adopt a different gene expression profile in response to GlcNAc to activate phenotypic switching.


Assuntos
Acetilglucosamina/metabolismo , Candida albicans/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos Tipo Acasalamento , Fatores de Transcrição/metabolismo , Candida albicans/citologia , Regulação Fúngica da Expressão Gênica , Mutação , Fatores de Transcrição/genética
8.
Appl Microbiol Biotechnol ; 98(6): 2609-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24435642

RESUMO

Most screening approaches produce compounds that target survival genes and are likely to generate resistance over time. Simply having more drugs does not address the potential emergence of resistance caused by target mutation, drug efflux pumps over-expression, and so on. There is a great need to explore new strategies to treat fungal infections caused by drug-resistant pathogens. In this study, we found that azole-resistant Candida albicans with CaCDR1 and CaCDR2 over-expression is hypersensitive against amphotericin B (AmB) by our high throughput synergy screening (HTSS). In contrast, Δcdr1 and Δcdr2 knockout strains were resistant to AmB. Moreover, clinical isolates with increased expression of CaCDR1 and CaCDR2 demonstrated susceptibility to AmB, which can also synergize with the efflux pumps inducer fluphenazine (FPZ). Finally, the increased drug susceptibility to AmB in azole-resistant C. albicans with drug efflux pumps over-expression was consistent with the elevated expression of CaERG11 and its associated ergosterols in clinical isolates. Our data implies that the level of ergosterol contents determines the susceptibility to azoles and AmB in C. albicans. Deep understanding of the above mechanisms would offer new hope to treat drug-resistant C. albicans.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica , Ergosterol/metabolismo , Sinergismo Farmacológico , Flufenazina/farmacologia
9.
Nat Biotechnol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839873

RESUMO

Porphyrins and their derivatives find extensive applications in medicine, food, energy and materials. In this study, we produced porphyrin compounds by combining Rhodobacter sphaeroides as an efficient cell factory with enzymatic catalysis. Genome-wide CRISPRi-based screening in R. sphaeroides identifies hemN as a target for improved coproporphyrin III (CPIII) production, and exploiting phosphorylation of PrrA further improves the production of bioactive CPIII to 16.5 g L-1 by fed-batch fermentation. Subsequent screening and engineering high-activity metal chelatases and coproheme decarboxylase results in the synthesis of various metalloporphyrins, including heme and the anti-tumor agent zincphyrin. After pilot-scale fermentation (200 L) and setting up the purification process for CPIII (purity >95%), we scaled up the production of heme and zincphyrin through enzymatic catalysis in a 5-L bioreactor, with CPIII achieving respective enzyme conversion rates of 63% and 98% and yielding 10.8 g L-1 and 21.3 g L-1, respectively. Our strategy offers a solution for high-yield bioproduction of heme and other valuable porphyrins with substantial industrial and medical applications.

10.
Eukaryot Cell ; 11(6): 773-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22544905

RESUMO

Pathogenic fungi are capable of switching between different phenotypes, each of which has a different biological advantage. In the most prevalent human fungal pathogen, Candida albicans, phenotypic transitions not only improve its adaptation to a continuously changing host microenvironment but also regulate sexual mating. In this report, we show that Candida tropicalis, another important human opportunistic pathogen, undergoes reversible and heritable phenotypic switching, referred to as the "white-opaque" transition. Here we show that N-acetylglucosamine (GlcNAc), an inducer of white-to-opaque switching in C. albicans, promotes opaque-cell formation and mating and also inhibits filamentation in a number of natural C. tropicalis strains. Our results suggest that host chemical signals may facilitate this phenotypic switching and mating of C. tropicalis, which had been previously thought to reproduce asexually. Overexpression of the C. tropicalis WOR1 gene in C. albicans induces opaque-cell formation. Additionally, an intermediate phase between white and opaque was observed in C. tropicalis, indicating that the switching could be tristable.


Assuntos
Acetilglucosamina/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Evolução Biológica , Candida tropicalis/citologia , Candida tropicalis/efeitos dos fármacos , Genes Fúngicos Tipo Acasalamento/genética , Genes de Troca/genética , Adaptação Fisiológica/genética , Candida tropicalis/genética , Candida tropicalis/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Humanos , Fenótipo , Filogenia , Reprodução/efeitos dos fármacos , Reprodução/genética , Especificidade da Espécie
11.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36978445

RESUMO

We are currently facing two big global challenges: antibiotics shortage and multidrug resistance [...].

12.
ACS Synth Biol ; 12(8): 2353-2366, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37402223

RESUMO

CRISPR tools, especially Cas9n-sgRNA guided cytidine deaminase base editors such as CRISPR-BEST, have dramatically simplified genetic manipulation of streptomycetes. One major advantage of CRISPR base editing technology is the possibility to multiplex experiments in genomically instable species. Here, we demonstrate scaled up Csy4 based multiplexed genome editing using CRISPR-mcBEST in Streptomyces coelicolor. We evaluated the system by simultaneously targeting 9, 18, and finally all 28 predicted specialized metabolite biosynthetic gene clusters in a single experiment. We present important insights into the performance of Csy4 based multiplexed genome editing at different scales. Using multiomics analysis, we investigated the systems wide effects of such extensive editing experiments and revealed great potentials and important bottlenecks of CRISPR-mcBEST. The presented analysis provides crucial data and insights toward the development of multiplexed base editing as a novel paradigm for high throughput engineering of Streptomyces chassis and beyond.


Assuntos
Actinomycetales , Edição de Genes , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Guia de Sistemas CRISPR-Cas , Actinomycetales/genética , Análise de Sistemas
13.
STAR Protoc ; 4(3): 102435, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432853

RESUMO

Large biosynthetic gene cluster (BGC) cloning is important for discovering natural product-based drugs and remains challenging in high GC content microorganisms (e.g., Actinobacteria). Here, we present an in vitro CRISPR-Cas12a-mediated protocol for direct cloning of large DNA fragments. We describe steps for crRNA design and preparation, genomic DNA isolation, and CRISPR-Cas12a cleavage and capture plasmid construction and linearization. We then detail target BGC and plasmid DNA ligation and transformation and screening for positive clones. For complete details on the use and execution of this protocol, please refer to Liang et al.1.


Assuntos
Sistemas CRISPR-Cas , DNA , Sistemas CRISPR-Cas/genética , Clonagem Molecular , Genômica
14.
Mar Drugs ; 10(6): 1297-1306, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22822373

RESUMO

Three new alkaloids, including auranomides A and B (1 and 2), a new scaffold containing quinazolin-4-one substituted with a pyrrolidin-2-iminium moiety, and auranomide C (3), as well as two known metabolites auranthine (4) and aurantiomides C (5) were isolated from the marine-derived fungus Penicillium aurantiogriseum. The chemical structures of compounds 1-3 were elucidated by extensive spectroscopic methods, including IR, HRESIMS and 2D NMR spectroscopic analysis. The absolute configurations of compounds 1-3 were suggested from the perspective of a plausible biosynthesis pathway. Compounds 1-3 were subjected to antitumor and antimicrobial screening models. Auranomides A-C exhibited moderate cytotoxic activity against human tumor cells. Auranomides B was the most potent among them with an IC(50) value of 0.097 µmol/mL against HEPG2 cells.


Assuntos
Alcaloides/química , Alcaloides/isolamento & purificação , Organismos Aquáticos/química , Penicillium/química , Alcaloides/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células Hep G2 , Humanos , Células K562 , Espectroscopia de Ressonância Magnética/métodos , Pirrolidinas/química , Pirrolidinas/isolamento & purificação , Pirrolidinas/farmacologia , Quinazolinonas/química , Quinazolinonas/isolamento & purificação , Quinazolinonas/farmacologia
15.
Biotechnol Adv ; 59: 107953, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398205

RESUMO

Chemical induction is one of the most common modalities used to manipulate gene expression in living systems. However, chemical induction can be toxic or expensive that compromise the economic feasibility when it comes to industrial-scale synthetic biology applications. These complications have driven the pursuit of better induction systems. Optogenetics technique can be a solution as it not only enables dynamic control with unprecedented spatiotemporal precision but also is inexpensive and eco-friendlier. The optogenetic technique harnesses natural light-sensing modules that are genetically encodable and re-programmable in various hosts. By further engineering these modules to connect with the microbial regulatory machinery, gene expression and protein activity can be finely tuned simply through light irradiation. Recent works on applying optogenetics to microbial synthetic biology have yielded remarkable achievements. To further expand the usability of optogenetics, more optogenetic tools with greater portability that are compatible with different microbial hosts need to be developed. This review focuses on non-opsin optogenetic systems and the current state of optogenetic advancements in microbes, by showcasing the different designs and functions of optogenetic tools, followed by an insight into the optogenetic approaches used to circumvent challenges in synthetic biology.


Assuntos
Optogenética , Biologia Sintética , Luz , Optogenética/métodos
16.
Nat Commun ; 12(1): 5206, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471126

RESUMO

CRISPR base editing is a powerful method to engineer bacterial genomes. However, it restricts editing to single-nucleotide substitutions. Here, to address this challenge, we adapt a CRISPR-Prime Editing-based, DSB-free, versatile, and single-nucleotide resolution genetic manipulation toolkit for prokaryotes. It can introduce substitutions, deletions, insertions, and the combination thereof, both in plasmids and the chromosome of E. coli with high fidelity. Notably, under optimal conditions, the efficiency of 1-bp deletions reach up to 40%. Moreover, deletions of up to 97 bp and insertions up to 33 bp were successful with the toolkit in E. coli, however, efficiencies dropped sharply with increased fragment sizes. With a second guide RNA, our toolkit can achieve multiplexed editing albeit with low efficiency. Here we report not only a useful addition to the genome engineering arsenal for E. coli, but also a potential basis for the development of similar toolkits for other bacteria.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano , Genoma Bacteriano , Plasmídeos , RNA Guia de Cinetoplastídeos/genética
17.
ACS Infect Dis ; 7(10): 2826-2835, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34514778

RESUMO

Candida albicans is a life-threatening, opportunistic fungal pathogen with a high mortality rate, especially within the immunocompromised populations. Multidrug resistance combined with limited antifungal drugs even worsens the situation. Given the facts that the current drug discovery strategies fail to deliver sufficient antifungals for the emerging multidrug resistance, we urgently need to develop novel approaches. By systematically investigating what caused the different antifungal activity of rapamycin in RPMI 1640 and YPD, we discovered that peptide-like compounds can generate a hyper-synergistic antifungal effect with rapamycin on both azole-resistant and sensitive clinical C. albicans isolates. The minimum inhibitory concentration (MIC) of rapamycin reaches as low as 2.14 nM (2-9 µg/mL), distinguishing this drug combination as a hyper-synergism by having a fractional inhibitory concentration (FIC) index ≤ 0.05 from the traditional defined synergism with an FIC index < 0.5. Further studies reveal that this hyper-synergism orthogonally targets the protein Tor1 and affects the TOR signaling pathway in C. albicans, very likely without crosstalk to the stress response, Ras/cAMP/PKA, or calcineurin signaling pathways. These results lead to a novel strategy of controlling drug resistant C. albicans infection in the immunocompromised populations. Instead of prophylactically administering other antifungals with undesirable side-effects for extended durations, we now only need to coadminister some nontoxic peptide additives. The novel antifungal strategy approached in this study not only provides a new therapeutic method to control fungal infections in rapamycin-taking immunocompromised patients but also mitigates the immunosuppressive side-effects of rapamycin, repurposing rapamycin as an antifungal agent with wide applications.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis , Humanos , Peptídeos , Sirolimo/farmacologia
18.
Synth Syst Biotechnol ; 6(4): 283-291, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34541346

RESUMO

Antigen detection provides particularly valuable information for medical diagnoses; however, the current detection methods are less sensitive and accurate than nucleic acid analysis. The combination of CRISPR/Cas12a and aptamers provides a new detection paradigm, but sensitive sensing and stable amplification in antigen detection remain challenging. Here, we present a PCR-free multiple trigger dsDNA tandem-based signal amplification strategy and a de novo designed dual aptamer synergistic sensing strategy. Integration of these two strategies endowed the CRISPR/Cas12a and aptamer-based method with ultra-sensitive, fast, and stable antigen detection. In a demonstration of this method, the limit of detection was at the single virus level (0.17 fM, approximately two copies/µL) in SARS-CoV-2 antigen nucleocapsid protein analysis of saliva or serum samples. The entire procedure required only 20 min. Given our system's simplicity and modular setup, we believe that it could be adapted reasonably easily for general applications in CRISPR/Cas12a-aptamer-based detection.

19.
Sci Bull (Beijing) ; 66(1): 69-77, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654316

RESUMO

Rapid and sensitive detection of various analytes is in high demand. Apart from its application in genome editing, CRISPR-Cas also shows promises in nucleic acid detection applications. To further exploit the potential of CRISPR-Cas for detection of diverse analytes, we present a versatile biosensing platform that couples the excellent affinity of aptamers for broad-range analytes with the collateral single-strand DNA cleavage activity of CRISPR-Cas12a. We demonstrated that the biosensors developed by this platform can be used to detect protein and small molecule in human serum with a complicated background, i.e., the tumor marker alpha fetoprotein and cocaine with the detection limits of 0.07 fmol/L and 0.34 µmol/L, respectively, highlighting the advantages of simplicity, sensitivity, short detection time, and low cost compared with the state-of-the-art biosensing approaches. Altogether, this biosensing platform with plug-and-play design show great potential in the detection of diverse analytes.

20.
Sci Bull (Beijing) ; 66(18): 1895-1905, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654399

RESUMO

Clinical use of antimicrobials faces great challenges from the emergence of multidrug-resistant pathogens. The overexpression of drug efflux pumps is one of the major contributors to multidrug resistance (MDR). Reversing the function of drug efflux pumps is a promising approach to overcome MDR. In the life-threatening fungal pathogen Candida albicans, the major facilitator superfamily (MFS) transporter Mdr1p can excrete many structurally unrelated antifungals, leading to MDR. Here we report a counterintuitive case of reversing MDR in C. albicans by using a natural product berberine to hijack the overexpressed Mdr1p for its own importation. Moreover, we illustrate that the imported berberine accumulates in mitochondria and compromises the mitochondrial function by impairing mitochondrial membrane potential and mitochondrial Complex I. This results in the selective elimination of Mdr1p overexpressed C. albicans cells. Furthermore, we show that berberine treatment can prolong the mean survival time of mice with blood-borne dissemination of Mdr1p overexpressed multidrug-resistant candidiasis. This study provides a potential direction of novel anti-MDR drug discovery by screening for multidrug efflux pump converters.


Assuntos
Berberina , Candida albicans , Animais , Camundongos , Fluconazol , Berberina/farmacologia , Antifúngicos/farmacologia , Resistência a Múltiplos Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA