Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(1): 351-372, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32280996

RESUMO

The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Laminopatias/patologia , Proteínas rab de Ligação ao GTP/genética , Catepsinas/metabolismo , Movimento Celular , Células Cultivadas , Reprogramação Celular , Doença de Charcot-Marie-Tooth/metabolismo , Endocitose , Receptores ErbB/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminopatias/metabolismo , Lisossomos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Polimorfismo de Nucleotídeo Único , Proteólise , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/metabolismo , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Mol Ther ; 22(7): 1342-1352, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24736278

RESUMO

Stem cell therapy is a promising approach to regenerate healthy tissues starting from a limited amount of self-renewing cells. Immunological rejection of cell therapy products might represent a major limitation. In this study, we investigated the immunological functional profile of mesoangioblasts, vessel-associated myogenic stem cells, currently tested in a phase 1-2a trial, active in our Institute, for the treatment of Duchenne muscular dystrophy. We report that in resting conditions, human mesoangioblasts are poorly immunogenic, inefficient in promoting the expansion of alloreactive T cells and intrinsically resistant to T-cell killing. However, upon exposure to interferon-γ or differentiation into myotubes, mesoangioblasts acquire the ability to promote the expansion of alloreactive T cells and acquire sensitivity to T-cell killing. Resistance of mesoangioblasts to T-cell killing is largely due to the expression of the intracellular serine protease inhibitor-9 and represents a relevant mechanism of stem cell immune evasion.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Distrofia Muscular de Duchenne/terapia , Diferenciação Celular , Células Cultivadas , Humanos , Interferon gama , Células-Tronco/citologia , Células-Tronco/fisiologia
3.
Nat Cell Biol ; 9(3): 255-67, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17293855

RESUMO

Cells derived from blood vessels of human skeletal muscle can regenerate skeletal muscle, similarly to embryonic mesoangioblasts. However, adult cells do not express endothelial markers, but instead express markers of pericytes, such as NG2 proteoglycan and alkaline phosphatase (ALP), and can be prospectively isolated from freshly dissociated ALP(+) cells. Unlike canonical myogenic precursors (satellite cells), pericyte-derived cells express myogenic markers only in differentiated myotubes, which they form spontaneously with high efficiency. When transplanted into severe combined immune deficient-X-linked, mouse muscular dystrophy (scid-mdx) mice, pericyte-derived cells colonize host muscle and generate numerous fibres expressing human dystrophin. Similar cells isolated from Duchenne patients, and engineered to express human mini-dystrophin, also give rise to many dystrophin-positive fibres in vivo. These data show that myogenic precursors, distinct from satellite cells, are associated with microvascular walls in the human skeletal muscle, may represent a correlate of embryonic 'mesoangioblasts' present after birth and may be a promising candidate for future cell-therapy protocols in patients.


Assuntos
Células-Tronco Adultas/citologia , Músculo Esquelético/citologia , Pericitos/citologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Adolescente , Adulto , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/transplante , Idoso , Animais , Antígenos CD/análise , Técnicas de Cultura de Células/métodos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Proteínas Musculares/análise , Proteínas Musculares/genética , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/cirurgia , Pericitos/química , Pericitos/transplante , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/transplante , Transplante de Células-Tronco/métodos , Resultado do Tratamento
5.
EMBO Mol Med ; 16(4): 927-944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438561

RESUMO

Cell therapy for muscular dystrophy has met with limited success, mainly due to the poor engraftment of donor cells, especially in fibrotic muscle at an advanced stage of the disease. We developed a cell-mediated exon skipping that exploits the multinucleated nature of myofibers to achieve cross-correction of resident, dystrophic nuclei by the U7 small nuclear RNA engineered to skip exon 51 of the dystrophin gene. We observed that co-culture of genetically corrected human DMD myogenic cells (but not of WT cells) with their dystrophic counterparts at a ratio of either 1:10 or 1:30 leads to dystrophin production at a level several folds higher than what predicted by simple dilution. This is due to diffusion of U7 snRNA to neighbouring dystrophic resident nuclei. When transplanted into NSG-mdx-Δ51mice carrying a mutation of exon 51, genetically corrected human myogenic cells produce dystrophin at much higher level than WT cells, well in the therapeutic range, and lead to force recovery even with an engraftment of only 3-5%. This level of dystrophin production is an important step towards clinical efficacy for cell therapy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Distrofina/genética , Éxons , Vetores Genéticos , Camundongos Endogâmicos mdx , Músculos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
6.
J Pathol ; 228(4): 544-53, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22847756

RESUMO

Pericytes are periendothelial cells that have been involved in many different functions including a possible role as mesodermal stem/progenitor cells. In the present study we demonstrate that alkaline phosphatase (AP) expression is specific for human muscular pericytes and can be used as a marker to identify them in skeletal muscle biopsies. We studied the pericyte population in skeletal muscle biopsies from controls, myopathic and neuropathic patients. We observed a significant increase in the number of pericytes only in myopathies that correlated with the number of NCAM(+) fibres, suggesting that an active muscular degenerative/regenerative process is related to an increase in the pericyte population. AP(+) pericytes sorted from skeletal muscle samples were able to activate the myogenic programme and fuse with both mononucleate satellite cells and mature multinucleated myotubes in vitro, demonstrating that they could participate in muscle regeneration. In accordance, pericytes expressing the myogenic transcription factor MyoD were found in biopsies of myopathic biopsies. All these data support the hypothesis that, apart from satellite cells, pericytes may play an important role in muscle regeneration in adult human muscles in vivo.


Assuntos
Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Distrofias Musculares/patologia , Doenças Neuromusculares/patologia , Pericitos/citologia , Regeneração/fisiologia , Adulto , Biomarcadores , Biópsia , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Distrofias Musculares/fisiopatologia , Proteína MyoD/metabolismo , Doenças Neuromusculares/fisiopatologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
7.
Nature ; 444(7119): 574-9, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17108972

RESUMO

Duchenne muscular dystrophy remains an untreatable genetic disease that severely limits motility and life expectancy in affected children. The only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability. Death usually occurs at about 1 year of age as a result of failure of respiratory muscles. Here we report that intra-arterial delivery of wild-type canine mesoangioblasts (vessel-associated stem cells) results in an extensive recovery of dystrophin expression, normal muscle morphology and function (confirmed by measurement of contraction force on single fibres). The outcome is a remarkable clinical amelioration and preservation of active motility. These data qualify mesoangioblasts as candidates for future stem cell therapy for Duchenne patients.


Assuntos
Células-Tronco Adultas/transplante , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Transplante de Células-Tronco , Células-Tronco Adultas/imunologia , Animais , Terapia Combinada , Creatina Quinase/sangue , Cães , Distrofina/biossíntese , Distrofina/genética , Distrofina/imunologia , Terapia Genética , Humanos , Masculino , Células Musculares , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Transplante Autólogo , Transplante Heterólogo
8.
Front Genet ; 13: 1056114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685855

RESUMO

In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.

9.
Stem Cells ; 27(1): 157-64, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18845762

RESUMO

Mesoangioblasts have been characterized as a population of vessel-associated stem cells able to differentiate into several mesodermal cell types, including skeletal muscle. Here, we report that the paired box transcription factor Pax3 plays a crucial role in directing mouse mesoangioblasts toward skeletal myogenesis in vitro and in vivo. Mesoangioblasts isolated from the aorta of Pax3 null embryos are severely impaired in skeletal muscle differentiation, whereas most other differentiation programs are not affected by the absence of Pax3. Moreover, Pax3(-/-) null mesoangioblasts failed to rescue the myopathic phenotype of the alpha-sarcoglycan mutant mouse. In contrast, mesoangioblasts from Pax3 gain of function, Pax3(PAX3-FKHR/+), mice display enhanced myogenesis in vitro and are more efficient in regenerating new muscle fibers in this model of muscular dystrophy. These data demonstrate that Pax3 is required for the differentiation of mesoangioblast stem cells into skeletal muscle, in keeping with its role in orchestrating entry into the myogenic program.


Assuntos
Vasos Sanguíneos/citologia , Diferenciação Celular , Embrião de Mamíferos/citologia , Mesoderma/citologia , Músculo Esquelético/citologia , Fatores de Transcrição Box Pareados/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Vasos Sanguíneos/enzimologia , Osso e Ossos/citologia , Proliferação de Células , Forma Celular , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Camundongos , Desenvolvimento Muscular , Distrofia Muscular Animal/metabolismo , Miócitos de Músculo Liso/citologia , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/deficiência , Fenótipo , Sarcoglicanas/biossíntese
10.
J Cell Biol ; 164(3): 441-9, 2004 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-14744997

RESUMO

High mobility group box 1 (HMGB1) is an abundant chromatin protein that acts as a cytokine when released in the extracellular milieu by necrotic and inflammatory cells. Here, we show that extracellular HMGB1 and its receptor for advanced glycation end products (RAGE) induce both migration and proliferation of vessel-associated stem cells (mesoangioblasts), and thus may play a role in muscle tissue regeneration. In vitro, HMGB1 induces migration and proliferation of both adult and embryonic mesoangioblasts, and disrupts the barrier function of endothelial monolayers. In living mice, mesoangioblasts injected into the femoral artery migrate close to HMGB1-loaded heparin-Sepharose beads implanted in healthy muscle, but are unresponsive to control beads. Interestingly, alpha-sarcoglycan null dystrophic muscle contains elevated levels of HMGB1; however, mesoangioblasts migrate into dystrophic muscle even if their RAGE receptor is disabled. This implies that the HMGB1-RAGE interaction is sufficient, but not necessary, for mesoangioblast homing; a different pathway might coexist. Although the role of endogenous HMGB1 in the reconstruction of dystrophic muscle remains to be clarified, injected HMGB1 may be used to promote tissue regeneration.


Assuntos
Divisão Celular/fisiologia , Movimento Celular/fisiologia , Endotélio Vascular/metabolismo , Proteína HMGB1/metabolismo , Células-Tronco/fisiologia , Animais , Bovinos , Transplante de Células , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Embrião de Mamíferos/fisiologia , Endotélio Vascular/citologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Regeneração/fisiologia , Sarcoglicanas , Células-Tronco/citologia
11.
EMBO Mol Med ; 10(2): 254-275, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242210

RESUMO

Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy.


Assuntos
Cromossomos Artificiais Humanos , Distrofina/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animais , Células Cultivadas , Vetores Genéticos , Humanos , Camundongos , Modelos Animais , Mutação
12.
J Clin Invest ; 114(2): 182-95, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15254585

RESUMO

Duchenne muscular dystrophy (DMD) is a common X-linked disease characterized by widespread muscle damage that invariably leads to paralysis and death. There is currently no therapy for this disease. Here we report that a subpopulation of circulating cells expressing AC133, a well-characterized marker of hematopoietic stem cells, also expresses early myogenic markers. Freshly isolated, circulating AC133(+) cells were induced to undergo myogenesis when cocultured with myogenic cells or exposed to Wnt-producing cells in vitro and when delivered in vivo through the arterial circulation or directly into the muscles of transgenic scid/mdx mice (which allow survival of human cells). Injected cells also localized under the basal lamina of host muscle fibers and expressed satellite cell markers such as M-cadherin and MYF5. Furthermore, functional tests of injected muscles revealed a substantial recovery of force after treatment. As these cells can be isolated from the blood, manipulated in vitro, and delivered through the circulation, they represent a possible tool for future cell therapy applications in DMD disease or other muscular dystrophies.


Assuntos
Distrofina/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Adolescente , Adulto , Animais , Antígenos CD , Biomarcadores , Diferenciação Celular/fisiologia , Transplante de Células , Células Cultivadas , Criança , Pré-Escolar , Técnicas de Cocultura , Distrofina/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Endogâmicos mdx , Camundongos SCID , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt
13.
Methods Mol Biol ; 1556: 149-177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28247349

RESUMO

More than 10 years ago, we isolated from mouse embryonic dorsal aorta a population of vessel-associated stem/progenitor cells, originally named mesoangioblasts (MABs ) , capable to differentiate in all mesodermal-derived tissues, including skeletal muscle. Similar though not identical cells have been later isolated and characterized from small vessels of adult mouse and human skeletal muscles. When delivered through the arterial circulation, MABs cross the blood vessel wall and participate in skeletal muscle regeneration , leading to an amelioration of muscular dystrophies in different preclinical animal models. As such, human MABs have been used under clinical-grade conditions for a Phase I/II clinical trial for Duchenne muscular dystrophy , just concluded. Although some pericyte markers can be used to identify mouse and human MABs , no single unequivocal marker can be used to isolate MABs . As a result, MABs are mainly defined by their isolation method and functional properties. This chapter provides detailed methods for isolation, culture, and characterization of MABs in light of the recent identification of a new marker, PW1 /Peg3, to screen and identify competent MABs before their use in cell therapy.


Assuntos
Separação Celular/métodos , Músculo Esquelético/citologia , Pericitos/citologia , Pericitos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores , Western Blotting , Antígeno CD56/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Criopreservação/métodos , Imunofluorescência , Humanos , Separação Imunomagnética/métodos , Camundongos , Microscopia de Fluorescência , Pericitos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia
14.
Circ Res ; 94(12): 1571-8, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15155529

RESUMO

Little is known about the molecular mechanism underlying specification and differentiation of smooth muscle (SM), and this is, at least in part, because of the few cellular systems available to study the acquisition of a SM phenotype in vitro. Mesoangioblasts are vessel-derived stem cells that can be induced to differentiate into different cell types of the mesoderm, including SM. We performed a DNA microarray analysis of a mesoangioblast clone that spontaneously expresses an immature SM phenotype and compared it with a sister clone mainly composed of undifferentiated progenitor cells. This study allowed us to define a gene expression profile for "stem" cells versus smooth muscle cells (SMCs) in the absence of differentiation inducers such as transforming growth factor beta. Two transcription factors, msx2 and necdin, are expressed at least 100 times more in SMCs than in stem cells, are coexpressed in all SMCs and tissues, are induced by transforming growth factor beta, and, when coexpressed, induce a number of SM markers in mesoangioblast, fibroblast, and endothelial cell lines. Conversely, their downregulation through RNA interference results in a decreased expression of SM markers. These data support the hypothesis that Msx2 and necdin act as master genes regulating SM differentiation in at least a subset of SMCs.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/citologia , Proteínas Musculares/biossíntese , Miócitos de Músculo Liso/citologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Animais , Aorta/citologia , Aorta/embriologia , Diferenciação Celular/genética , Células Cultivadas , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Proteínas de Homeodomínio , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Músculo Liso Vascular , Miócitos Cardíacos/citologia , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes de Fusão/fisiologia , Ativação Transcricional , Transfecção
15.
Nat Commun ; 6: 6364, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25751651

RESUMO

Mesoangioblasts are vessel-associated progenitor cells that show therapeutic promise for the treatment of muscular dystrophy. Mesoangioblasts have the ability to undergo skeletal muscle differentiation and cross the blood vessel wall regardless of the developmental stage at which they are isolated. Here we show that PW1/Peg3 is expressed at high levels in mesoangioblasts obtained from mouse, dog and human tissues and its level of expression correlates with their myogenic competence. Silencing PW1/Peg3 markedly inhibits myogenic potential of mesoangioblasts in vitro through MyoD degradation. Moreover, lack of PW1/Peg3 abrogates mesoangioblast ability to cross the vessel wall and to engraft into damaged myofibres through the modulation of the junctional adhesion molecule-A. We conclude that PW1/Peg3 function is essential for conferring proper mesoangioblast competence and that the determination of PW1/Peg3 levels in human mesoangioblasts may serve as a biomarker to identify the best donor populations for therapeutic application in muscular dystrophies.


Assuntos
Biomarcadores/metabolismo , Vasos Sanguíneos/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco/fisiologia , Animais , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Primers do DNA/genética , Cães , Inativação Gênica , Vetores Genéticos/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Luciferases , Camundongos , Microscopia de Fluorescência , Desenvolvimento Muscular/fisiologia , Distrofias Musculares/terapia , Proteína MyoD/metabolismo , Retroviridae , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Skelet Muscle ; 5: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347253

RESUMO

BACKGROUND: Merosin-deficient congenital muscular dystrophy type-1A (MDC1A) is characterized by progressive muscular dystrophy and dysmyelinating neuropathy caused by mutations of the α2 chain of laminin-211, the predominant laminin isoform of muscles and nerves. MDC1A has no available treatment so far, although preclinical studies showed amelioration of the disease by the overexpression of miniagrin (MAG). MAG reconnects orphan laminin-211 receptors to other laminin isoforms available in the extracellular matrix of MDC1A mice. METHODS: Mesoangioblasts (MABs) are vessel-associated progenitors that can form the skeletal muscle and have been shown to restore defective protein levels and motor skills in animal models of muscular dystrophies. As gene therapy in humans still presents challenging technical issues and limitations, we engineered MABs to overexpress MAG to treat MDC1A mouse models, thus combining cell to gene therapy. RESULTS: MABs synthesize and secrete only negligible amount of laminin-211 either in vitro or in vivo. MABs engineered to deliver MAG and injected in muscles of MDC1A mice showed amelioration of muscle histology, increased expression of laminin receptors in muscle, and attenuated deterioration of motor performances. MABs did not enter the peripheral nerves, thus did not affect the associated peripheral neuropathy. CONCLUSIONS: Our study demonstrates the potential efficacy of combining cell with gene therapy to treat MDC1A.

17.
EMBO Mol Med ; 7(12): 1513-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26543057

RESUMO

Intra-arterial transplantation of mesoangioblasts proved safe and partially efficacious in preclinical models of muscular dystrophy. We now report the first-in-human, exploratory, non-randomized open-label phase I-IIa clinical trial of intra-arterial HLA-matched donor cell transplantation in 5 Duchenne patients. We administered escalating doses of donor-derived mesoangioblasts in limb arteries under immunosuppressive therapy (tacrolimus). Four consecutive infusions were performed at 2-month intervals, preceded and followed by clinical, laboratory, and muscular MRI analyses. Two months after the last infusion, a muscle biopsy was performed. Safety was the primary endpoint. The study was relatively safe: One patient developed a thalamic stroke with no clinical consequences and whose correlation with mesoangioblast infusion remained unclear. MRI documented the progression of the disease in 4/5 patients. Functional measures were transiently stabilized in 2/3 ambulant patients, but no functional improvements were observed. Low level of donor DNA was detected in muscle biopsies of 4/5 patients and donor-derived dystrophin in 1. Intra-arterial transplantation of donor mesoangioblasts in human proved to be feasible and relatively safe. Future implementation of the protocol, together with a younger age of patients, will be needed to approach efficacy.


Assuntos
Infusões Intra-Arteriais/estatística & dados numéricos , Distrofia Muscular de Duchenne/cirurgia , Distrofia Muscular de Duchenne/terapia , Terapia Baseada em Transplante de Células e Tecidos , Teste de Histocompatibilidade , Humanos
18.
Stem Cells Dev ; 22(3): 512-23, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22913669

RESUMO

Human mesoangioblasts are vessel-associated stem cells that are currently in phase I/II clinical trials for the treatment of patients with Duchenne muscular dystrophy. To date, little is known about the effect of mesoangioblasts on human immune cells and vice versa. We hypothesized that mesoangioblasts could modulate the function of immune cells in a similar manner to mesenchymal stromal cells. Human mesoangioblasts did not evoke, but rather potently suppressed human T-cell proliferation and effector function in vitro in a dose- and time-dependent manner. Furthermore, mesoangioblasts exert these inhibitory effects uniformly on human CD4+ and CD8+ T cells in a reversible manner without inducing a state of anergy. Interferon (IFN)-γ and tumor necrosis factor (TNF)-α play crucial roles in the initial activation of mesoangioblasts. Indoleamine 2,3-dioxygenase (IDO) and prostaglandin E-2 (PGE) were identified as key mechanisms of action involved in the mesoangioblast suppression of T-cell proliferation. Together, these data demonstrate a previously unrecognized capacity of mesoangioblasts to modulate immune responses.


Assuntos
Células-Tronco Adultas/enzimologia , Proliferação de Células , Dinoprostona/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T/fisiologia , Células-Tronco Adultas/fisiologia , Antígenos CD/metabolismo , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Antígenos HLA/metabolismo , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Interferon gama/fisiologia , Leucócitos Mononucleares/fisiologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/fisiologia
19.
F1000Res ; 2: 24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24715949

RESUMO

Human mesoangioblasts are currently in a phase I/II clinical trial for the treatment of patients with Duchenne muscular dystrophy. However, limitations associated with the finite life span of these cells combined with the significant numbers of mesoangioblasts required to treat all of the skeletal muscles in these patients restricts their therapeutic potential. Induced pluripotent stem cell (iPSC)-derived mesoangioblasts may provide the solution to this problem. Although, the idea of using iPSC-derived cell therapies has been proposed for quite some time, our understanding of how the immune system interacts with these cells is inadequate. Herein, we show that iPSC-derived mesoangioblasts (HIDEMs) from healthy donors and, importantly, limb-girdle muscular dystrophy 2D patients exert immunosuppressive effects on T cell proliferation.  Interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α) play crucial roles in the initial activation of HIDEMs and importantly indoleamine 2,3 dioxygenase (IDO) and prostaglandin E2 (PGE-2) were identified as key mechanisms involved in HIDEM suppression of T cell proliferation. Together with recent studies confirming the myogenic function and regenerative potential of these cells, we suggest that HIDEMs could provide an unlimited alternative source for mesoangioblast-based therapies.

20.
Sci Transl Med ; 4(140): 140ra89, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22745439

RESUMO

Mesoangioblasts are stem/progenitor cells derived from a subset of pericytes found in muscle that express alkaline phosphatase. They have been shown to ameliorate the disease phenotypes of different animal models of muscular dystrophy and are now undergoing clinical testing in children affected by Duchenne's muscular dystrophy. Here, we show that patients with a related disease, limb-girdle muscular dystrophy 2D (LGMD2D), which is caused by mutations in the gene encoding α-sarcoglycan, have reduced numbers of this pericyte subset and thus produce too few mesoangioblasts for use in autologous cell therapy. Hence, we reprogrammed fibroblasts and myoblasts from LGMD2D patients to generate human induced pluripotent stem cells (iPSCs) and developed a protocol for the derivation of mesoangioblast-like cells from these iPSCs. The iPSC-derived mesoangioblasts were expanded and genetically corrected in vitro with a lentiviral vector carrying the gene encoding human α-sarcoglycan and a promoter that would ensure expression only in striated muscle. When these genetically corrected human iPSC-derived mesoangioblasts were transplanted into α-sarcoglycan-null immunodeficient mice, they generated muscle fibers that expressed α-sarcoglycan. Finally, transplantation of mouse iPSC-derived mesoangioblasts into α-sarcoglycan-null immunodeficient mice resulted in functional amelioration of the dystrophic phenotype and restoration of the depleted progenitors. These findings suggest that transplantation of genetically corrected mesoangioblast-like cells generated from iPSCs from LGMD2D patients may be useful for treating this type of muscular dystrophy and perhaps other forms of muscular dystrophy as well.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Distrofia Muscular do Cíngulo dos Membros/terapia , Transplante de Células-Tronco/métodos , Animais , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA