Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2016732119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862450

RESUMO

Sleep can be distinguished from wake by changes in brain electrical activity, typically assessed using electroencephalography (EEG). The hallmark of nonrapid-eye-movement (NREM) sleep is the shift from high-frequency, low-amplitude wake EEG to low-frequency, high-amplitude sleep EEG dominated by spindles and slow waves. Here we identified signatures of sleep in brain hemodynamic activity, using simultaneous functional MRI (fMRI) and EEG. We found that, at the transition from wake to sleep, fMRI blood oxygen level-dependent (BOLD) activity evolved from a mixed-frequency pattern to one dominated by two distinct oscillations: a low-frequency (<0.1 Hz) oscillation prominent in light sleep and correlated with the occurrence of spindles, and a high-frequency oscillation (>0.1 Hz) prominent in deep sleep and correlated with the occurrence of slow waves. The two oscillations were both detectable across the brain but exhibited distinct spatiotemporal patterns. During the falling-asleep process, the low-frequency oscillation first appeared in the thalamus, then the posterior cortex, and lastly the frontal cortex, while the high-frequency oscillation first appeared in the midbrain, then the frontal cortex, and lastly the posterior cortex. During the waking-up process, both oscillations disappeared first from the thalamus, then the frontal cortex, and lastly the posterior cortex. The BOLD oscillations provide local signatures of spindle and slow wave activity. They may be employed to monitor the regional occurrence of sleep or wakefulness, track which regions are the first to fall asleep or wake up at the wake-sleep transitions, and investigate local homeostatic sleep processes.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Sono , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Humanos , Oxigênio/sangue , Vigília
2.
Proc Natl Acad Sci U S A ; 119(44): e2123426119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279446

RESUMO

The brain mechanisms of memory consolidation remain elusive. Here, we examine blood-oxygen-level-dependent (BOLD) correlates of image recognition through the scope of multiple influential systems consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic resonance imaging human study in which ∼135,000 trials of image recognition were conducted over the span of a year among eight subjects. We find that early- and late-stage image recognition associates with both medial temporal lobe (MTL) and visual cortex when evaluating regional activations and a multivariate classifier. Supporting multiple-trace theory (MTT), parts of the MTL activation time course show remarkable fit to a 20-y-old MTT time-dynamical model predicting early trace intensity increases and slight subsequent interference (R2 > 0.90). These findings contrast a simplistic, yet common, view that memory traces are transferred from MTL to cortex. Next, we test the hypothesis that the MTL trace signature of memory consolidation should also reflect synaptic "desaturation," as evidenced by an increased signal-to-noise ratio. We find that the magnitude of relative BOLD enhancement among surviving memories is positively linked to the rate of removal (i.e., forgetting) of competing traces. Moreover, an image-feature and time interaction of MTL and visual cortex functional connectivity suggests that consolidation mechanisms improve the specificity of a distributed trace. These neurobiological effects do not replicate on a shorter timescale (within a session), implicating a prolonged, offline process. While recognition can potentially involve cognitive processes outside of memory retrieval (e.g., re-encoding), our work largely favors MTT and desaturation as perhaps complementary consolidative memory mechanisms.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Testes Neuropsicológicos , Lobo Temporal/fisiologia , Oxigênio
3.
Semin Cell Dev Biol ; 125: 91-100, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33712366

RESUMO

Sleep requires that we disconnect from the environment, losing the ability to promptly respond to stimuli. There must be at least one essential function that justifies why we take this risk every day, and that function must depend on the brain being offline. We have proposed that this function is to renormalize synaptic weights after learning has led to a net increase in synaptic strength in many brain circuits. Without this renormalization, synaptic activity would become energetically too expensive and saturation would prevent new learning. There is converging evidence from molecular, electrophysiological, and ultrastructural experiments showing a net increase in synaptic strength after the major wake phase, and a net decline after sleep. The evidence also suggests that sleep-dependent renormalization is a smart process of synaptic down-selection, comprehensive and yet specific, which could explain the many beneficial effects of sleep on cognition. Recently, a key molecular mechanism that allows broad synaptic weakening during sleep was identified. Other mechanisms still being investigated should eventually explain how sleep can weaken most synapses but afford protection to some, including those directly activated by learning. That synaptic down-selection takes place during sleep is by now established; why it should take place during sleep has a plausible explanation; how it happens is still work in progress.


Assuntos
Sono , Sinapses , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Aprendizagem , Sono/fisiologia , Sinapses/fisiologia
4.
Eur J Neurosci ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973508

RESUMO

Converging electrophysiological, molecular and ultrastructural evidence supports the hypothesis that sleep promotes a net decrease in excitatory synaptic strength, counteracting the net synaptic potentiation caused by ongoing learning during waking. However, several outstanding questions about sleep-dependent synaptic weakening remain. Here, we address some of these questions by using two established molecular markers of synaptic strength, the levels of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors containing the GluA1 subunit and the phosphorylation of GluA1 at serine 845 (p-GluA1(845)). We previously found that, in the rat cortex and hippocampus, these markers are lower after 6-8 h of sleep than after the same time spent awake. Here, we measure GluA1 and p-GluA1(845) levels in synaptosomes of mouse cortex after 5 h of either sleep, sleep deprivation, recovery sleep after sleep deprivation or selective REM sleep deprivation (32 C57BL/B6 adult mice, 16 females). We find that relative to after sleep deprivation, these synaptic markers are lower after sleep independent of whether the mice were allowed to enter REM sleep. Moreover, 5 h of recovery sleep following acute sleep deprivation is enough to renormalize their expression. Thus, the renormalization of GluA1 and p-GluA1(845) expression crucially relies on NREM sleep and can occur in a few hours of sleep after acute sleep deprivation.

5.
PLoS Comput Biol ; 19(10): e1011465, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847724

RESUMO

This paper presents Integrated Information Theory (IIT) 4.0. IIT aims to account for the properties of experience in physical (operational) terms. It identifies the essential properties of experience (axioms), infers the necessary and sufficient properties that its substrate must satisfy (postulates), and expresses them in mathematical terms. In principle, the postulates can be applied to any system of units in a state to determine whether it is conscious, to what degree, and in what way. IIT offers a parsimonious explanation of empirical evidence, makes testable predictions concerning both the presence and the quality of experience, and permits inferences and extrapolations. IIT 4.0 incorporates several developments of the past ten years, including a more accurate formulation of the axioms as postulates and mathematical expressions, the introduction of a unique measure of intrinsic information that is consistent with the postulates, and an explicit assessment of causal relations. By fully unfolding a system's irreducible cause-effect power, the distinctions and relations specified by a substrate can account for the quality of experience.


Assuntos
Encéfalo , Teoria da Informação , Modelos Neurológicos , Estado de Consciência
6.
Brain ; 146(1): 109-123, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383415

RESUMO

Loss of consciousness is a hallmark of many epileptic seizures and carries risks of serious injury and sudden death. While cortical sleep-like activities accompany loss of consciousness during focal impaired awareness seizures, the mechanisms of loss of consciousness during focal to bilateral tonic-clonic seizures remain unclear. Quantifying differences in markers of cortical activation and ictal recruitment between focal impaired awareness and focal to bilateral tonic-clonic seizures may also help us to understand their different consequences for clinical outcomes and to optimize neuromodulation therapies. We quantified clinical signs of loss of consciousness and intracranial EEG activity during 129 focal impaired awareness and 50 focal to bilateral tonic-clonic from 41 patients. We characterized intracranial EEG changes both in the seizure onset zone and in areas remote from the seizure onset zone with a total of 3386 electrodes distributed across brain areas. First, we compared the dynamics of intracranial EEG sleep-like activities: slow-wave activity (1-4 Hz) and beta/delta ratio (a validated marker of cortical activation) during focal impaired awareness versus focal to bilateral tonic-clonic. Second, we quantified differences between focal to bilateral tonic-clonic and focal impaired awareness for a marker validated to detect ictal cross-frequency coupling: phase-locked high gamma (high-gamma phased-locked to low frequencies) and a marker of ictal recruitment: the epileptogenicity index. Third, we assessed changes in intracranial EEG activity preceding and accompanying behavioural generalization onset and their correlation with electromyogram channels. In addition, we analysed human cortical multi-unit activity recorded with Utah arrays during three focal to bilateral tonic-clonic seizures. Compared to focal impaired awareness, focal to bilateral tonic-clonic seizures were characterized by deeper loss of consciousness, even before generalization occurred. Unlike during focal impaired awareness, early loss of consciousness before generalization was accompanied by paradoxical decreases in slow-wave activity and by increases in high-gamma activity in parieto-occipital and temporal cortex. After generalization, when all patients displayed loss of consciousness, stronger increases in slow-wave activity were observed in parieto-occipital cortex, while more widespread increases in cortical activation (beta/delta ratio), ictal cross-frequency coupling (phase-locked high gamma) and ictal recruitment (epileptogenicity index). Behavioural generalization coincided with a whole-brain increase in high-gamma activity, which was especially synchronous in deep sources and could not be explained by EMG. Similarly, multi-unit activity analysis of focal to bilateral tonic-clonic revealed sustained increases in cortical firing rates during and after generalization onset in areas remote from the seizure onset zone. Overall, these results indicate that unlike during focal impaired awareness, the neural signatures of loss of consciousness during focal to bilateral tonic-clonic consist of paradoxical increases in cortical activation and neuronal firing found most consistently in posterior brain regions. These findings suggest differences in the mechanisms of ictal loss of consciousness between focal impaired awareness and focal to bilateral tonic-clonic and may account for the more negative prognostic consequences of focal to bilateral tonic-clonic.


Assuntos
Epilepsias Parciais , Convulsões , Humanos , Convulsões/diagnóstico , Encéfalo , Eletroencefalografia/métodos , Inconsciência
7.
Neuroimage ; 274: 120133, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094626

RESUMO

STUDY OBJECTIVES: Sleep slow wave activity, as measured using EEG delta power (<4 Hz), undergoes significant changes throughout development, mirroring changes in brain function and anatomy. Yet, age-dependent variations in the characteristics of individual slow waves have not been thoroughly investigated. Here we aimed at characterizing individual slow wave properties such as origin, synchronization, and cortical propagation at the transition between childhood and adulthood. METHODS: We analyzed overnight high-density (256 electrodes) EEG recordings of healthy typically developing children (N = 21, 10.3 ± 1.5 years old) and young healthy adults (N = 18, 31.1 ± 4.4 years old). All recordings were preprocessed to reduce artifacts, and NREM slow waves were detected and characterized using validated algorithms. The threshold for statistical significance was set at p = 0.05. RESULTS: The slow waves of children were larger and steeper, but less widespread than those of adults. Moreover, they tended to mainly originate from and spread over more posterior brain areas. Relative to those of adults, the slow waves of children also displayed a tendency to more strongly involve and originate from the right than the left hemisphere. The separate analysis of slow waves characterized by high and low synchronization efficiency showed that these waves undergo partially distinct maturation patterns, consistent with their possible dependence on different generation and synchronization mechanisms. CONCLUSIONS: Changes in slow wave origin, synchronization, and propagation at the transition between childhood and adulthood are consistent with known modifications in cortico-cortical and subcortico-cortical brain connectivity. In this light, changes in slow-wave properties may provide a valuable yardstick to assess, track, and interpret physiological and pathological development.


Assuntos
Ondas Encefálicas , Neocórtex , Adulto , Humanos , Criança , Eletroencefalografia , Sono/fisiologia , Ondas Encefálicas/fisiologia
8.
Neurocrit Care ; 38(3): 584-590, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029315

RESUMO

Early reemergence of consciousness predicts long-term functional recovery for patients with severe brain injury. However, tools to reliably detect consciousness in the intensive care unit are lacking. Transcranial magnetic stimulation electroencephalography has the potential to detect consciousness in the intensive care unit, predict recovery, and prevent premature withdrawal of life-sustaining therapy.


Assuntos
Estado de Consciência , Estimulação Magnética Transcraniana , Humanos , Estado de Consciência/fisiologia , Eletroencefalografia , Unidades de Terapia Intensiva , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/terapia
9.
Entropy (Basel) ; 25(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36832700

RESUMO

Integrated information theory (IIT) starts from consciousness itself and identifies a set of properties (axioms) that are true of every conceivable experience. The axioms are translated into a set of postulates about the substrate of consciousness (called a complex), which are then used to formulate a mathematical framework for assessing both the quality and quantity of experience. The explanatory identity proposed by IIT is that an experience is identical to the cause-effect structure unfolded from a maximally irreducible substrate (a Φ-structure). In this work we introduce a definition for the integrated information of a system (φs) that is based on the existence, intrinsicality, information, and integration postulates of IIT. We explore how notions of determinism, degeneracy, and fault lines in the connectivity impact system-integrated information. We then demonstrate how the proposed measure identifies complexes as systems, the φs of which is greater than the φs of any overlapping candidate systems.

10.
Eur J Neurosci ; 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226638

RESUMO

The systemic administration of sodium oxybate (SXB), the sodium salt of gamma-hydroxybutyric acid, promotes slow wave activity (SWA, 0.5-4 Hz EEG power) and increases non-rapid eye movement (NREM) sleep. These effects are mediated by the widely expressed GABAb receptors, and thus, the brain areas targeted by SXB remain unclear. Because slow waves are mainly a cortical phenomenon, we tested here whether systemic SXB promotes SWA by acting directly on the cortex. Moreover, because somatostatin (SOM) + cortical interneurons play a key role in SWA generation, we also assessed their contribution to the effects of SXB. In adult SOM-Cre mice, the injection of SXB in left secondary motor cortex increased SWA during NREM sleep in the first 30 min post-injection (11 mice: either sex). SWA, the amplitude and frequency of the slow waves, and the frequency of the OFF periods increased ipsilaterally and contralaterally to the SXB injection in frontal and parietal cortex. All these changes disappeared when the intracortical injection of SXB was preceded by the chemogenetic inhibition of the SOM+ cells. Thus, SXB may promote the slow waves of NREM sleep, at least in part, by acting directly on the cortex, and this effect involves GABAergic SOM+ interneurons. Our working hypothesis is that SXB potentiates the ability of these cells to inhibit all other cortical cell types via a GABAb mechanism, thus promoting the transition from ON to OFF periods during NREM sleep.

11.
Eur J Neurosci ; 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215116

RESUMO

The mechanisms leading to the alternation between active (UP) and silent (DOWN) states during sleep slow waves (SWs) remain poorly understood. Previous models have explained the transition to the DOWN state by a progressive failure of excitation because of the build-up of adaptation currents or synaptic depression. However, these models are at odds with recent studies suggesting a role for presynaptic inhibition by Martinotti cells (MaCs) in generating SWs. Here, we update a classical large-scale model of sleep SWs to include MaCs and propose a different mechanism for the generation of SWs. In the wake mode, the network exhibits irregular and selective activity with low firing rates (FRs). Following an increase in the strength of background inputs and a modulation of synaptic strength and potassium leak potential mimicking the reduced effect of acetylcholine during sleep, the network enters a sleep-like regime in which local increases of network activity trigger bursts of MaC activity, resulting in strong disfacilitation of the local network via presynaptic GABAB1a -type inhibition. This model replicates findings on slow wave activity (SWA) during sleep that challenge previous models, including low and skewed FRs that are comparable between the wake and sleep modes, higher synchrony of transitions to DOWN states than to UP states, the possibility of triggering SWs by optogenetic stimulation of MaCs, and the local dependence of SWA on synaptic strength. Overall, this work points to a role for presynaptic inhibition by MaCs in the generation of DOWN states during sleep.

12.
Conscious Cogn ; 97: 103247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864360

RESUMO

Evidence suggests continuity between cognition in waking and sleeping states. However, one type of cognition that may differ is episodic thoughts of the past and future. The current study investigated this across waking, NREM sleep and REM sleep. We analyzed thought reports obtained from a large sample of individuals (N = 138) who underwent experience-sampling during wakefulness as well as serial awakenings in sleep. Our data suggest that while episodic thoughts are common during waking spontaneous thought, episodic thoughts of both the past and the future rarely occur in either N2 or REM sleep. Moreover, replicating previous findings, episodic thoughts during wakefulness exhibit a strong prospective bias and frequently involve autobiographical planning. Together, these results suggest that the occurrence of spontaneous episodic thoughts differs substantially across waking and dreaming sleep states. We suggest that this points to a difference in the way that human consciousness is typically experienced across the sleep-wake cycle.


Assuntos
Sono REM , Vigília , Cognição , Humanos , Estudos Prospectivos , Sono
13.
Behav Brain Sci ; 45: e60, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35319429

RESUMO

The target article misrepresents the foundations of integrated information theory (IIT) and ignores many essential publications. It, thus, falls to this lead commentary to outline the axioms and postulates of IIT and correct major misconceptions. The commentary also explains why IIT starts from phenomenology and why it predicts that only select physical substrates can support consciousness. Finally, it highlights that IIT's account of experience - a cause-effect structure quantified by integrated information - has nothing to do with "information transfer."


Assuntos
Teoria da Informação , Modelos Neurológicos , Estado de Consciência , Humanos
14.
J Neurosci ; 40(29): 5589-5603, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541070

RESUMO

The slow waves of non-rapid eye movement (NREM) sleep reflect experience-dependent plasticity and play a direct role in the restorative functions of sleep. Importantly, slow waves behave as traveling waves, and their propagation is assumed to occur through cortico-cortical white matter connections. In this light, the corpus callosum (CC) may represent the main responsible for cross-hemispheric slow-wave propagation. To verify this hypothesis, we performed overnight high-density (hd)-EEG recordings in five patients who underwent total callosotomy due to drug-resistant epilepsy (CPs; two females), in three noncallosotomized neurologic patients (NPs; two females), and in a sample of 24 healthy adult subjects (HSs; 13 females). In all CPs slow waves displayed a significantly reduced probability of cross-hemispheric propagation and a stronger inter-hemispheric asymmetry. In both CPs and HSs, the incidence of large slow waves within individual NREM epochs tended to differ across hemispheres, with a relative overall predominance of the right over the left hemisphere. The absolute magnitude of this asymmetry was greater in CPs relative to HSs. However, the CC resection had no significant effects on the distribution of slow-wave origin probability across hemispheres. The present results indicate that CC integrity is essential for the cross-hemispheric traveling of slow waves in human sleep, which is in line with the assumption of a direct relationship between white matter integrity and slow-wave propagation. Our findings also revealed a residual cross-hemispheric slow-wave propagation that may rely on alternative pathways, including cortico-subcortico-cortical loops. Finally, these data indicate that the lack of the CC does not lead to differences in slow-wave generation across brain hemispheres.SIGNIFICANCE STATEMENT The slow waves of NREM sleep behave as traveling waves, and their propagation has been suggested to reflect the integrity of white matter cortico-cortical connections. To directly assess this hypothesis, here we investigated the role of the corpus callosum in the cortical spreading of NREM slow waves through the study of a rare population of totally callosotomized patients. Our results demonstrate a causal role of the corpus callosum in the cross-hemispheric traveling of sleep slow waves. Additionally, we found that callosotomy does not affect the relative tendency of each hemisphere at generating slow waves. Incidentally, we also found that slow waves tend to originate more often in the right than in the left hemisphere in both callosotomized and healthy adult individuals.


Assuntos
Ondas Encefálicas , Corpo Caloso/fisiologia , Sono de Ondas Lentas , Adulto , Idoso , Corpo Caloso/cirurgia , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimento de Encéfalo Dividido
15.
Nat Rev Neurosci ; 17(5): 307-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27094080

RESUMO

There have been a number of advances in the search for the neural correlates of consciousness--the minimum neural mechanisms sufficient for any one specific conscious percept. In this Review, we describe recent findings showing that the anatomical neural correlates of consciousness are primarily localized to a posterior cortical hot zone that includes sensory areas, rather than to a fronto-parietal network involved in task monitoring and reporting. We also discuss some candidate neurophysiological markers of consciousness that have proved illusory, and measures of differentiation and integration of neural activity that offer more promising quantitative indices of consciousness.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Neurônios/fisiologia , Animais , Humanos , Vias Neurais
16.
Nat Rev Neurosci ; 17(7): 450-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27225071

RESUMO

In this Opinion article, we discuss how integrated information theory accounts for several aspects of the relationship between consciousness and the brain. Integrated information theory starts from the essential properties of phenomenal experience, from which it derives the requirements for the physical substrate of consciousness. It argues that the physical substrate of consciousness must be a maximum of intrinsic cause-effect power and provides a means to determine, in principle, the quality and quantity of experience. The theory leads to some counterintuitive predictions and can be used to develop new tools for assessing consciousness in non-communicative patients.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Teoria da Informação , Modelos Neurológicos , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Animais , Humanos
17.
J Sleep Res ; 30(4): e13261, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33442931

RESUMO

Emotion processing abnormalities and sleep pathology are central to the phenomenology of paediatric posttraumatic stress disorder, and sleep disturbance has been linked to the development, maintenance and severity of the disorder. Given emerging evidence indicating a role for sleep in emotional brain function, it has been proposed that dysfunctional processing of emotional experiences during sleep may play a significant role in affective disorders, including posttraumatic stress disorder. Here we sought to examine the relationship between sleep and emotion processing in typically developing youth, and youth with a diagnosis of posttraumatic stress disorder . We use high-density electroencephalogram to compare baseline sleep with sleep following performance on a task designed to assess both memory for and reactivity to negative and neutral imagery in 10 youths with posttraumatic stress disorder, and 10 age- and sex-matched non-traumatized typically developing youths. Subjective ratings of arousal to negative imagery (ΔArousal = post-sleep minus pre-sleep arousal ratings) remain unchanged in youth with posttraumatic stress disorder following sleep (mean increase 0.15, CI -0.28 to +0.58), but decreased in TD youth (mean decrease -1.0, 95% CI -1.44 to -0.58). ΔArousal, or affective habituation, was negatively correlated with global change in slow-wave activity power (ρ = -0.58, p = .008). When considered topographically, the correlation between Δslow-wave activity power and affective habituation was most significant in a frontal cluster of 27 electrodes (Spearman, ρ = -0.51, p = .021). Our results highlight the importance of slow-wave sleep for adaptive emotional processing in youth, and have implications for symptom persistence in paediatric posttraumatic stress disorder. Impairments in slow-wave activity may represent a modifiable risk factor in paediatric posttraumatic stress disorder.


Assuntos
Emoções , Sono , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Adolescente , Criança , Feminino , Humanos , Masculino , Projetos Piloto
18.
Entropy (Basel) ; 23(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803765

RESUMO

The Integrated Information Theory (IIT) of consciousness starts from essential phenomenological properties, which are then translated into postulates that any physical system must satisfy in order to specify the physical substrate of consciousness. We recently introduced an information measure (Barbosa et al., 2020) that captures three postulates of IIT-existence, intrinsicality and information-and is unique. Here we show that the new measure also satisfies the remaining postulates of IIT-integration and exclusion-and create the framework that identifies maximally irreducible mechanisms. These mechanisms can then form maximally irreducible systems, which in turn will specify the physical substrate of conscious experience.

19.
J Neurosci ; 39(14): 2686-2697, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737310

RESUMO

Although the EEG slow wave of sleep is typically considered to be a hallmark of nonrapid eye movement (NREM) sleep, recent work in mice has shown that slow waves can also occur in REM sleep. Here, we investigated the presence and cortical distribution of negative delta (1-4 Hz) waves in human REM sleep by analyzing high-density EEG sleep recordings obtained in 28 healthy subjects. We identified two clusters of delta waves with distinctive properties: (1) a frontal-central cluster characterized by ∼2.5-3.0 Hz, relatively large, notched delta waves (so-called "sawtooth waves") that tended to occur in bursts, were associated with increased gamma activity and rapid eye movements (EMs), and upon source modeling displayed an occipital-temporal and a frontal-central component and (2) a medial-occipital cluster characterized by more isolated, slower (<2 Hz), and smaller waves that were not associated with rapid EMs, displayed a negative correlation with gamma activity, and were also found in NREM sleep. Therefore, delta waves are an integral part of REM sleep in humans and the two identified subtypes (sawtooth and medial-occipital slow waves) may reflect distinct generation mechanisms and functional roles. Sawtooth waves, which are exclusive to REM sleep, share many characteristics with ponto-geniculo-occipital waves described in animals and may represent the human equivalent or a closely related event, whereas medial-occipital slow waves appear similar to NREM sleep slow waves.SIGNIFICANCE STATEMENT The EEG slow wave is typically considered a hallmark of nonrapid eye movement (NREM) sleep, but recent work in mice has shown that it can also occur in REM sleep. By analyzing high-density EEG recordings collected in healthy adult individuals, we show that REM sleep is characterized by prominent delta waves also in humans. In particular, we identified two distinctive clusters of delta waves with different properties: a frontal-central cluster characterized by faster, activating "sawtooth waves" that share many characteristics with ponto-geniculo-occipital waves described in animals and a medial-occipital cluster containing slow waves that are more similar to NREM sleep slow waves. These findings indicate that REM sleep is a spatially and temporally heterogeneous state and may contribute to explaining its known functional and phenomenological properties.


Assuntos
Córtex Cerebral/fisiologia , Ritmo Delta/fisiologia , Sono REM/fisiologia , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Adulto Jovem
20.
J Neurosci ; 39(34): 6613-6625, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31263066

RESUMO

Sleep has been hypothesized to rebalance overall synaptic strength after ongoing learning during waking leads to net synaptic potentiation. If so, because synaptic strength and size are correlated, synapses on average should be larger after wake and smaller after sleep. This prediction was recently confirmed in mouse cerebral cortex using serial block-face electron microscopy (SBEM). However, whether these findings extend to other brain regions is unknown. Moreover, sleep deprivation by gentle handling was reported to produce hippocampal spine loss, raising the question of whether synapse size and number are differentially affected by sleep and waking. Here we applied SBEM to measure axon-spine interface (ASI), the contact area between pre-synapse and post-synapse, and synapse density in CA1 stratum radiatum. Adolescent YFP-H mice were studied after 6-8 h of sleep (S = 6), spontaneous wake at night (W = 4) or wake enforced during the day by novelty exposure (EW = 4; males/females balanced). In each animal ≥425 ASIs were measured and synaptic vesicles were counted in ~100 synapses/mouse. Reconstructed dendrites included many small, nonperforated synapses and fewer large, perforated synapses. Relative to S, ASI sizes in perforated synapses shifted toward higher values after W and more so after EW. ASI sizes in nonperforated synapses grew after EW relative to S and W, and so did their density. ASI size correlated with presynaptic vesicle number but the proportion of readily available vesicles decreased after EW, suggesting presynaptic fatigue. Thus, CA1 synapses undergo changes consistent with sleep-dependent synaptic renormalization and their number increases after extended wake.SIGNIFICANCE STATEMENT Sleep benefits learning, memory consolidation, and the integration of new with old memories, but the underlying mechanisms remain highly debated. One hypothesis suggests that sleep's cognitive benefits stem from its ability to renormalize total synaptic strength, after ongoing learning during wake leads to net synaptic potentiation. Supporting evidence for this hypothesis mainly comes from the cerebral cortex, including the observation that cortical synapses are larger after wake and smaller after sleep. Using serial electron microscopy, we find here that sleep/wake synaptic changes consistent with sleep-dependent synaptic renormalization also occur in the CA1 region. Thus, the role of sleep in maintaining synaptic homeostasis may extend to the hippocampus, a key area for learning and synaptic plasticity.


Assuntos
Axônios/patologia , Região CA1 Hipocampal/patologia , Espinhas Dendríticas/patologia , Privação do Sono/patologia , Sinapses/patologia , Envelhecimento , Animais , Feminino , Aprendizagem , Masculino , Memória , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Transmissão Sináptica , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA