Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
N Engl J Med ; 385(14): 1292-1301, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34587386

RESUMO

BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Pleiotropia Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Proteínas Wnt/metabolismo , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Genes Recessivos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome , Via de Sinalização Wnt
2.
Birth Defects Res A Clin Mol Teratol ; 88(4): 228-31, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20222028

RESUMO

BACKGROUND: This report describes the sixth case of an unusual association: Down syndrome with achondroplasia. It also analyzes the effects of both of these disorders on patient phenotype. METHODS: A male infant was evaluated for Down syndrome. His appearance also suggested a diagnosis of achondroplasia. The child was evaluated by physical examination, radiography, cytogenetic study, and mutation analysis. RESULTS: Chromosome analysis showed a karyotype of 47,XY,+21 in all 30 cells analyzed. Radiographic examination showed typical findings of achondroplasia, such as disproportionately large skull, shortening of limb segments, and lumbar lordosis. FGFR3 screening showed a heterozygous G1138A mutation. CONCLUSIONS: The interaction of these two distinct genetic disorders in the same patient produces a phenotype typical of each syndrome with some overlapping signs. This case represents de novo origin of two disorders that both may be parental-age related.


Assuntos
Acondroplasia/complicações , Síndrome de Down/complicações , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Acondroplasia/genética , Acondroplasia/patologia , Substituição de Aminoácidos , Síndrome de Down/genética , Síndrome de Down/patologia , Síndrome de Down/psicologia , Genótipo , Humanos , Recém-Nascido , Cariotipagem , Masculino , Idade Materna , Mutação de Sentido Incorreto , Idade Paterna , Fenótipo , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA