Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Cell ; 35(12): 4238-4265, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648264

RESUMO

Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Terpenos/metabolismo , Protetores Solares , Flavonóis/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 192(3): 1928-1946, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718552

RESUMO

Grapevine (Vitis vinifera L.) is one of the most widely cultivated fruit crops because the winemaking industry has huge economic relevance worldwide. Uncovering the molecular mechanisms controlling the developmental progression of plant organs will prove essential for maintaining high-quality grapes, expressly in the context of climate change, which impairs the ripening process. Through a deep inspection of transcriptomic data, we identified VviNAC60, a member of the NAC transcription factor family, as a putative regulator of grapevine organ maturation. We explored VviNAC60 binding landscapes through DNA affinity purification followed by sequencing and compared bound genes with transcriptomics datasets from grapevine plants stably and transiently overexpressing VviNAC60 to define a set of high-confidence targets. Among these, we identified key molecular markers associated with organ senescence and fruit ripening. Physiological, metabolic, and promoter activation analyses showed that VviNAC60 induces chlorophyll degradation and anthocyanin accumulation through the upregulation of STAY-GREEN PROTEIN 1 (VviSGR1) and VviMYBA1, respectively, with the latter being upregulated through a VviNAC60-VviNAC03 regulatory complex. Despite sharing a closer phylogenetic relationship with senescence-related homologs to the NAC transcription factor AtNAP, VviNAC60 complemented the nonripening(nor) mutant phenotype in tomato (Solanum lycopersicum), suggesting a dual role as an orchestrator of both ripening- and senescence-related processes. Our data support VviNAC60 as a regulator of processes initiated in the grapevine vegetative- to mature-phase organ transition and therefore as a potential target for enhancing the environmental resilience of grapevine by fine-tuning the duration of the vegetative phase.


Assuntos
Fatores de Transcrição , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Vitis/fisiologia
3.
J Exp Bot ; 75(8): 2330-2350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159048

RESUMO

During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.


Assuntos
Estilbenos , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico , Estilbenos/metabolismo , Vitis/metabolismo , Estresse Oxidativo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Exp Bot ; 74(20): 6207-6223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37591311

RESUMO

Fleshy fruits of angiosperms are organs specialized for promoting seed dispersal by attracting herbivores and enticing them to consume the organ and the seeds it contains. Ripening can be broadly defined as the processes serving as a plant strategy to make the fleshy fruit appealing to animals, consisting of a coordinated series of changes in color, texture, aroma, and flavor that result from an intricate interplay of genetically and epigenetically programmed events. The ripening of fruits can be categorized into two types: climacteric, which is characterized by a rapid increase in respiration rate typically accompanied by a burst of ethylene production, and non-climacteric, in which this pronounced peak in respiration is absent. Here we review current knowledge of transcriptomic changes taking place in apple (Malus × domestica, climacteric) and grapevine (Vitis vinifera, non-climacteric) fruit during ripening, with the aim of highlighting specific and common hormonal and molecular events governing the process in the two species. With this perspective, we found that specific NAC transcription factor members participate in ripening initiation in grape and are involved in restoring normal physiological ripening progression in impaired fruit ripening in apple. These elements suggest the existence of a common regulatory mechanism operated by NAC transcription factors and auxin in the two species.


Assuntos
Climatério , Malus , Vitis , Malus/metabolismo , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant J ; 99(5): 895-909, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31034726

RESUMO

The transcriptional regulatory structure of plant genomes is still relatively unexplored, and little is known about factors that influence expression variation in plants. We used a genetic system consisting of 10 heterozygous grape varieties with high consanguinity and high haplotypic diversity to: (i) identify regions of haplotype sharing through whole-genome resequencing and single-nucleotide polymorphism (SNP) genotyping; (ii) analyse gene expression through RNA-seq in four stages of berry development; and (iii) associate gene expression variation with genetic and epigenetic properties. We found that haplotype sharing in and around genes was positively correlated with similarity in expression and was negatively correlated with the fraction of differentially expressed genes. Genetic and epigenetic properties of the gene and the surrounding region showed significant effects on the extent of expression variation, with negative associations for the level of gene body methylation and mean expression level, and with positive associations for nucleotide diversity, structural diversity and ratio of non-synonymous to synonymous nucleotide diversity. We also observed a spatial dependency of covariation of gene expression among varieties. These results highlight relevant roles for cis-acting factors, selective constraints and epigenetic features of the gene, and the regional context in which the gene is located, in the determination of expression variation. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA385116; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA392287; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA373967 (released upon publication); https://www.ncbi.nlm.nih.gov/bioproject/PRJNA490160 (released upon publication); https://www.ncbi.nlm.nih.gov/bioproject/PRJNA265039; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA265040.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Variação Genética , Genômica , Vitis/genética , Cromossomos de Plantas/genética , Frutas/genética , Redes Reguladoras de Genes , Haplótipos , Heterozigoto , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Vitis/classificação
6.
Plant J ; 93(6): 1143-1159, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29381239

RESUMO

Changes in the performance of genotypes in different environments are defined as genotype × environment (G×E) interactions. In grapevine (Vitis vinifera), complex interactions between different genotypes and climate, soil and farming practices yield unique berry qualities. However, the molecular basis of this phenomenon remains unclear. To dissect the basis of grapevine G×E interactions we characterized berry transcriptome plasticity, the genome methylation landscape and within-genotype allelic diversity in two genotypes cultivated in three different environments over two vintages. We identified, through a novel data-mining pipeline, genes with expression profiles that were: unaffected by genotype or environment, genotype-dependent but unaffected by the environment, environmentally-dependent regardless of genotype, and G×E-related. The G×E-related genes showed different degrees of within-cultivar allelic diversity in the two genotypes and were enriched for stress responses, signal transduction and secondary metabolism categories. Our study unraveled the mutual relationships between genotypic and environmental variables during G×E interaction in a woody perennial species, providing a reference model to explore how cultivated fruit crops respond to diverse environments. Also, the pivotal role of vineyard location in determining the performance of different varieties, by enhancing berry quality traits, was unraveled.


Assuntos
Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Vitis/genética , Meio Ambiente , Ontologia Genética , Genes de Plantas/genética , Genótipo , Fenótipo , Vitis/metabolismo
7.
BMC Genomics ; 20(1): 739, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615398

RESUMO

BACKGROUND: High temperature during grape berry ripening impairs the quality of fruits and wines. Veraison time, which marks ripening onset, is a key factor for determining climatic conditions during berry ripening. Understanding its genetic control is crucial to successfully breed varieties more adapted to a changing climate. Quantitative trait loci (QTL) studies attempting to elucidate the genetic determinism of developmental stages in grapevine have identified wide genomic regions. Broad scale transcriptomic studies, by identifying sets of genes modulated during berry development and ripening, also highlighted a huge number of putative candidates. RESULTS: With the final aim of providing an overview about available information on the genetic control of grapevine veraison time, and prioritizing candidates, we applied a meta-QTL analysis for grapevine phenology-related traits and checked for co-localization of transcriptomic candidates. A consensus genetic map including 3130 markers anchored to the grapevine genome assembly was compiled starting from 39 genetic maps. Two thousand ninety-three QTLs from 47 QTL studies were projected onto the consensus map, providing a comprehensive overview about distribution of available QTLs and revealing extensive co-localization especially across phenology related traits. From 141 phenology related QTLs we generated 4 veraison meta-QTLs located on linkage group (LG) 1 and 2, and 13 additional meta-QTLs connected to the veraison time genetic control, among which the most relevant were located on LG 14, 16 and 18. Functional candidates in these intervals were inspected. Lastly, taking advantage of available transcriptomic datasets, expression data along berry development were integrated, in order to pinpoint among positional candidates, those differentially expressed across the veraison transition. CONCLUSION: Integration of meta-QTLs analysis on available phenology related QTLs and data from transcriptomic dataset allowed to strongly reduce the number of candidate genes for the genetic control of the veraison transition, prioritizing a list of 272 genes, among which 78 involved in regulation of gene expression, signal transduction or development.


Assuntos
Perfilação da Expressão Gênica/métodos , Locos de Características Quantitativas , Vitis/crescimento & desenvolvimento , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Vitis/genética
8.
Plant Physiol ; 178(3): 1187-1206, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224433

RESUMO

Grapevine (Vitis vinifera) is a model for the investigation of physiological and biochemical changes during the formation and ripening of nonclimacteric fleshy fruits. However, the order and complexity of the molecular events during fruit development remain poorly understood. To identify the key molecular events controlling berry formation and ripening, we created a highly detailed transcriptomic and metabolomic map of berry development, based on samples collected every week from fruit set to maturity in two grapevine genotypes for three consecutive years, resulting in 219 samples. Major transcriptomic changes were represented by coordinated waves of gene expression associated with early development, veraison (onset of ripening)/midripening, and late-ripening and were consistent across vintages. The two genotypes were clearly distinguished by metabolite profiles and transcriptional changes occurring primarily at the veraison/midripening phase. Coexpression analysis identified a core network of transcripts as well as variations in the within-module connections representing varietal differences. By focusing on transcriptome rearrangements close to veraison, we identified two rapid and successive shared transitions involving genes whose expression profiles precisely locate the timing of the molecular reprogramming of berry development. Functional analyses of two transcription factors, markers of the first transition, suggested that they participate in a hierarchical cascade of gene activation at the onset of ripening. This study defined the initial transcriptional events that mark and trigger the onset of ripening and the molecular network that characterizes the whole process of berry development, providing a framework to model fruit development and maturation in grapevine.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Transcriptoma , Vitis/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/crescimento & desenvolvimento
9.
Plant J ; 91(2): 220-236, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370629

RESUMO

Grapevine organs accumulate anthocyanins in a cultivar-specific and environmentally induced manner. The MYBA1-A2 genes within the berry color locus in chromosome 2 represent the major genetic determinants of fruit color. The simultaneous occurrence of transposon insertions and point mutations in these genes is responsible for most white-skinned phenotypes; however, the red pigmentation found in vegetative organs suggests the presence of additional regulators. This work describes a genomic region of chromosome 14 containing three closely related R2R3-MYB genes, named MYBA5, MYBA6 and MYBA7. Ectopic expression of the latter two genes in grapevine hairy roots promoted anthocyanin accumulation without affecting other phenylpropanoids. Transcriptomic profiling of hairy roots expressing MYBA1, MYBA6 and MYBA7 showed that these regulators share the activation of late biosynthetic and modification/transport-related genes, but differ in the activation of the FLAVONOID-3'5'-HYDROXYLASE (F3'5'H) family. An alternatively spliced MYBA6 variant was incapable of activating anthocyanin synthesis, however, because of the lack of an MYC1 interaction domain. MYBA1, MYBA6.1 and MYBA7 activated the promoters of UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT) and ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (3AT), but only MYBA1 induced F3'5'H in concordance with the low proportion of tri-hydroxylated anthocyanins found in MYBA6-A7 hairy roots. This putative new color locus is related to the red/cyanidic pigmentation of vegetative organs in black- and white-skinned cultivars, and forms part of the UV-B radiation response pathway orchestrated by ELONGATED HYPOCOTYL 5 (HY5). These results demonstrate the involvement of additional anthocyanin regulators in grapevine and suggest an evolutionary divergence between the two grape color loci for controlling additional targets of the flavonoid pathway.


Assuntos
Antocianinas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/metabolismo , Antocianinas/genética , Cromossomos de Plantas , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Vitis/genética
10.
Plant Physiol ; 174(4): 2376-2396, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28652263

RESUMO

Grapevine (Vitis vinifera) berry development involves a succession of physiological and biochemical changes reflecting the transcriptional modulation of thousands of genes. Although recent studies have investigated the dynamic transcriptome during berry development, most have focused on a single grapevine variety, so there is a lack of comparative data representing different cultivars. Here, we report, to our knowledge, the first genome-wide transcriptional analysis of 120 RNA samples corresponding to 10 Italian grapevine varieties collected at four growth stages. The 10 varieties, representing five red-skinned and five white-skinned berries, were all cultivated in the same experimental vineyard to reduce environmental variability. The comparison of transcriptional changes during berry formation and ripening allowed us to determine the transcriptomic traits common to all varieties, thus defining the core transcriptome of berry development, as well as the transcriptional dynamics underlying differences between red and white berry varieties. A greater variation among the red cultivars than between red and white cultivars at the transcriptome level was revealed, suggesting that anthocyanin accumulation during berry maturation has a direct impact on the transcriptomic regulation of multiple biological processes. The expression of genes related to phenylpropanoid/flavonoid biosynthesis clearly distinguished the behavior of red and white berry genotypes during ripening but also reflected the differential accumulation of anthocyanins in the red berries, indicating some form of cross talk between the activation of stilbene biosynthesis and the accumulation of anthocyanins in ripening berries.


Assuntos
Antocianinas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Transcriptoma/genética , Vitis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Propanóis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Plant Physiol ; 172(3): 1821-1843, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27670818

RESUMO

The molecular events that characterize postripening grapevine berries have rarely been investigated and are poorly defined. In particular, a detailed definition of changes occurring during the postharvest dehydration, a process undertaken to make some particularly special wine styles, would be of great interest for both winemakers and plant biologists. We report an exhaustive survey of transcriptomic and metabolomic responses in berries representing six grapevine genotypes subjected to postharvest dehydration under identical controlled conditions. The modulation of phenylpropanoid metabolism clearly distinguished the behavior of genotypes, with stilbene accumulation as the major metabolic event, although the transient accumulation/depletion of anthocyanins and flavonols was the prevalent variation in genotypes that do not accumulate stilbenes. The modulation of genes related to phenylpropanoid/stilbene metabolism highlighted the distinct metabolomic plasticity of genotypes, allowing for the identification of candidate structural and regulatory genes. In addition to genotype-specific responses, a core set of genes was consistently modulated in all genotypes, representing the common features of berries undergoing dehydration and/or commencing senescence. This included genes controlling ethylene and auxin metabolism as well as genes involved in oxidative and osmotic stress, defense responses, anaerobic respiration, and cell wall and carbohydrate metabolism. Several transcription factors were identified that may control these shared processes in the postharvest berry. Changes representing both common and genotype-specific responses to postharvest conditions shed light on the cellular processes taking place in harvested berries stored under dehydrating conditions for several months.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Vitis/crescimento & desenvolvimento , Vitis/genética , Dessecação , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Metaboloma/genética , Metabolômica , Análise de Componente Principal , Propanóis/metabolismo , Estilbenos/metabolismo , Transcriptoma/genética
12.
BMC Genomics ; 17(1): 815, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765014

RESUMO

BACKGROUND: Grapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades. RESULTS: Here we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar. CONCLUSIONS: Overall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes.


Assuntos
Regulação da Expressão Gênica de Plantas , Transcriptoma , Vitis/genética , Água , Biomarcadores , Metabolismo dos Carboidratos/genética , Desidratação/genética , Secas , Perfilação da Expressão Gênica , Genoma de Planta , Estudo de Associação Genômica Ampla , Estresse Oxidativo/genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Vitis/metabolismo
13.
Plant Physiol ; 167(4): 1448-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659381

RESUMO

Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of transcriptional activators.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Propanóis/metabolismo , Vitis/genética , Motivos de Aminoácidos , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação para Baixo , Flores/genética , Flores/metabolismo , Genótipo , Dados de Sequência Molecular , Petunia/genética , Petunia/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes/genética , Sementes/metabolismo , Análise de Sequência de DNA , Nicotiana/genética , Nicotiana/metabolismo , Vitis/metabolismo
14.
J Exp Bot ; 67(18): 5429-5445, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543604

RESUMO

Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized. We cloned and studied the role of UV-B RECEPTOR (UVR1), ELONGATED HYPOCOTYL 5 (HY5), and HY5 HOMOLOGUE (HYH) from V. vinifera We performed gene functional characterizations, generated co-expression networks, and tested them in different environmental conditions. These genes complemented the Arabidopsis uvr8 and hy5 mutants in morphological and secondary metabolic responses to radiation. We combined microarray and RNA sequencing (RNA-seq) data with promoter inspections to identify HY5 and HYH putative target genes and their DNA binding preferences. Despite sharing a large set of common co-expressed genes, we found different hierarchies for HY5 and HYH depending on the organ and stress condition, reflecting both co-operative and partially redundant roles. New candidate UV-B gene markers were supported by the presence of HY5-binding sites. These included a set of flavonol-related genes that were up-regulated in a HY5 transient expression assay. We irradiated in vitro plantlets and fruits from old potted vines with high and low UV-B exposures and followed the accumulation of flavonols and changes in gene expression in comparison with non-irradiated conditions. UVR1, HY5, and HYH expression varied with organ, developmental stage, and type of radiation. Surprisingly, UVR1 expression was modulated by shading and temperature in berries, but not by UV-B radiation. We propose that the UV-B response machinery favours berry flavonol accumulation through the activation of HY5 and HYH at different developmental stages at both high and low UV-B exposures.


Assuntos
Flavonóis/metabolismo , Proteínas de Plantas/fisiologia , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/fisiologia , Vitis/efeitos da radiação , Clonagem Molecular , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Genes de Plantas/fisiologia , Transdução de Sinais/fisiologia , Raios Ultravioleta , Regulação para Cima/fisiologia , Regulação para Cima/efeitos da radiação , Vitis/metabolismo , Vitis/fisiologia
15.
J Plant Res ; 129(3): 513-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26825649

RESUMO

Anthocyanin levels decline in some red grape berry varieties ripened under high-temperature conditions, but the underlying mechanism is not yet clear. Here we studied the effects of two different temperature regimes, representing actual Sangiovese (Vitis vinifera L.) viticulture regions, on the accumulation of mRNAs and enzymes controlling berry skin anthocyanins. Potted uniform plants of Sangiovese were kept from veraison to harvest, in two plastic greenhouses with different temperature conditions. The low temperature (LT) conditions featured average and maximum daily air temperatures of 20 and 29 °C, respectively, whereas the corresponding high temperature (HT) conditions were 22 and 36 °C, respectively. The anthocyanin concentration at harvest was much lower in HT berries than LT berries although their profile was similar under both conditions. Under HT conditions, the biosynthesis of anthocyanins was suppressed at both the transcriptional and enzymatic levels, but peroxidase activity was higher. This suggests that the low anthocyanin content of HT berries reflects the combined impact of reduced biosynthesis and increased degradation, particularly the direct role of peroxidases in anthocyanin catabolism. Overexpression of VviPrx31 decreased anthocyanin contents in Petunia hybrida petals under heat stress condition. These data suggest that high temperature can stimulate peroxidase activity thus anthocyanin degradation in ripening grape berries.


Assuntos
Antocianinas/metabolismo , Frutas/genética , Genes de Plantas , Estudos de Associação Genética , Temperatura Alta , Peroxidases/genética , Vitis/enzimologia , Vitis/genética , Flores/metabolismo , Frutas/enzimologia , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Resposta ao Choque Térmico/genética , Concentração de Íons de Hidrogênio , Peroxidases/metabolismo , Petunia/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade
16.
BMC Genomics ; 16: 393, 2015 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-25981679

RESUMO

BACKGROUND: miRNAs are the most abundant class of small non-coding RNAs, and they are involved in post-transcriptional regulations, playing a crucial role in the refinement of genetic programming during plant development. Here we present a comprehensive picture of miRNA regulation in Vitis vinifera L. plant during its complete life cycle. Furthering our knowledge about the post-transcriptional regulation of plant development is fundamental to understand the biology of such an important crop. RESULTS: We analyzed 70 small RNA libraries, prepared from berries, inflorescences, tendrils, buds, carpels, stamens and other samples at different developmental stages. One-hundred and ten known and 175 novel miRNAs have been identified and a wide grapevine expression atlas has been described. The distribution of miRNA abundance reveals that 22 novel miRNAs are specific to stamen, and two of them are, interestingly, involved in ethylene biosynthesis, while only few miRNAs are highly specific to other organs. Thirty-eight miRNAs are present in all our samples, suggesting a role in key regulatory circuit. On the basis of miRNAs abundance and distribution across samples and on the estimated correlation, we suggest that miRNA expression define organ identity. We performed target prediction analysis and focused on miRNA expression analysis in berries and inflorescence during their development, providing an initial functional description of the identified miRNAs. CONCLUSIONS: Our findings represent a very extensive miRNA expression atlas in grapevine, allowing the definition of how the spatio-temporal distribution of miRNAs defines organ identity. We describe miRNAs abundance in specific tissues not previously described in grapevine and contribute to future targeted functional analyses. Finally, we present a deep characterization of miRNA involvement in berry and inflorescence development, suggesting a role for miRNA-driven hormonal regulation.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Vitis/genética , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Inflorescência/genética , Inflorescência/metabolismo , MicroRNAs/metabolismo , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcriptoma
17.
BMC Plant Biol ; 15: 191, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26245744

RESUMO

BACKGROUND: The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.


Assuntos
Interação Gene-Ambiente , Metaboloma , Proteínas de Plantas/genética , Vitis/genética , Frutas/genética , Frutas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análise de Sequência de Proteína , Vitis/metabolismo
18.
Plant Cell ; 24(9): 3489-505, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22948079

RESUMO

We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Transcriptoma , Vitis/genética , Cromossomos de Plantas/genética , Análise por Conglomerados , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Expressão Gênica , Perfilação da Expressão Gênica , Marcadores Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Especificidade da Espécie , Vitis/crescimento & desenvolvimento , Vitis/fisiologia
19.
BMC Genomics ; 15: 281, 2014 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-24725365

RESUMO

BACKGROUND: Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. RESULTS: We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. CONCLUSIONS: The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Transcriptoma , Vitis/genética , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Sítios de Ligação , Mapeamento Cromossômico , Cromossomos de Plantas , Análise por Conglomerados , Biologia Computacional/métodos , Sequência Conservada , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ordem dos Genes , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Vitis/classificação
20.
Plant Cell Physiol ; 55(3): 517-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24363289

RESUMO

Flavonoids play a key role in grapevine physiology and also contribute substantially to the quality of berries and wines. VvMYB5a and VvMYB5b are R2R3-MYB transcription factors previously proposed to control the spatiotemporal expression of flavonoid structural genes during berry development. We investigated the functions of these two proteins in detail by heterologous expression in a petunia an2 mutant, which has negligible anthocyanin levels in the petals because it lacks the MYB protein PhAN2. We also expressed VvMYBA1, the grapevine ortholog of petunia PhAN2, in the same genetic background. The anthocyanin profiles induced by expressing these transgenes in the petals revealed that VvMYBA1 is the functional ortholog of PhAN2 and that, unlike VvMYB5a, VvMYB5b can partially complement the an2 mutation. Transcriptomic analysis of petals by microarray hybridization and quantitative PCR confirmed that VvMYB5b up-regulates a subset of anthocyanin structural genes, whereas VvMYB5a has a more limited impact on the expression of genes related to anthocyanin biosynthesis. Furthermore, we identified additional specific and common targets of these two regulators, related to vacuolar acidification and membrane remodeling. Taken together, these data provide insight into the role of VvMYB5a and VvMYB5b in flavonoid biosynthesis and provide evidence for additional regulatory roles in distinct pathways.


Assuntos
Antocianinas/metabolismo , Petunia/metabolismo , Vitis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA