Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36981336

RESUMO

The Einstein equivalence principle is based on the equality of gravitational and inertial mass, which has led to the universality of a free-fall concept. The principle has been extremely well tested so far and has been tested with a great precision. However, all these tests and the corresponding arguments are based on a classical setup where the notion of position and velocity of the mass is associated with a classical value as opposed to the quantum entities.Here, we provide a simple quantum protocol based on creating large spatial superposition states in a laboratory to test the quantum regime of the equivalence principle where both matter and gravity are treated at par as a quantum entity. The two gravitational masses of the two spatial superpositions source the gravitational potential for each other. We argue that such a quantum protocol is unique with regard to testing especially the generalisation of the weak equivalence principle by constraining the equality of gravitational and inertial mass via witnessing quantum entanglement.

2.
Phys Rev Lett ; 129(26): 260401, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36608206

RESUMO

Many phenomena and fundamental predictions, ranging from Hawking radiation to the early evolution of the Universe rely on the interplay between quantum mechanics and gravity or more generally, quantum mechanics in curved spacetimes. However, our understanding is hindered by the lack of experiments that actually allow us to probe quantum mechanics in curved spacetime in a repeatable and accessible way. Here we propose an experimental scheme for a photon that is prepared in a path superposition state across two rotating Sagnac interferometers that have different diameters and thus represent a superposition of two different spacetimes. We predict the generation of genuine entanglement even at low rotation frequencies and show how these effects could be observed even due to the Earth's rotation. These predictions provide an accessible platform in which to study the role of the underlying spacetime in the generation of entanglement.

3.
Phys Rev Lett ; 123(11): 110401, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573252

RESUMO

Although quantum physics is well understood in inertial reference frames (flat spacetime), a current challenge is the search for experimental evidence of nontrivial or unexpected behavior of quantum systems in noninertial frames. Here, we present a novel test of quantum mechanics in a noninertial reference frame: we consider Hong-Ou-Mandel (HOM) interference on a rotating platform and study the effect of uniform rotation on the distinguishability of the photons. Both theory and experiments show that the rotational motion induces a relative delay in the photon arrival times at the exit beam splitter and that this delay is observed as a shift in the position of the HOM dip. This experiment can be extended to a full general relativistic test of quantum physics using satellites in Earth's orbit and indicates a new route toward the use of photonic technologies for investigating quantum mechanics at the interface with relativity.

4.
Phys Rev Lett ; 121(25): 253601, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608788

RESUMO

We investigate experimentally the dynamics of a nonspherical levitated nanoparticle in a vacuum. In addition to translation and rotation motion, we observe the light torque-induced precession and nutation of the trapped particle. We provide a theoretical model, which we numerically simulate and from which we derive approximate expressions for the motional frequencies. Both the simulation and approximate expressions we find in good agreement with experiments. We measure a torque of 1.9±0.5×10^{-23} N m at 1×10^{-1} mbar, with an estimated torque sensitivity of 3.6±1.1×10^{-31} N m/sqrt[Hz] at 1×10^{-7} mbar.

5.
Phys Rev Lett ; 119(10): 100403, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949182

RESUMO

We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)PRLTAO0031-9007].

6.
Phys Rev Lett ; 119(24): 240401, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286711

RESUMO

Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA