Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Cell Sci ; 127(Pt 10): 2151-60, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24610947

RESUMO

The small G protein Arf like 1 (Arl1) is found at the Golgi complex, and its GTP-bound form recruits several effectors to the Golgi including GRIP-domain-containing coiled-coil proteins, and the Arf1 exchange factors Big1 and Big2. To investigate the role of Arl1, we have characterised a loss-of-function mutant of the Drosophila Arl1 orthologue. The gene is essential, and examination of clones of cells lacking Arl1 shows that it is required for recruitment of three of the four GRIP domain golgins to the Golgi, with Drosophila GCC185 being less dependent on Arl1. At a functional level, Arl1 is essential for formation of secretory granules in the larval salivary gland. When Arl1 is missing, Golgi are still present but there is a dispersal of adaptor protein 1 (AP-1), a clathrin adaptor that requires Arf1 for its membrane recruitment and which is known to be required for secretory granule biogenesis. Arl1 does not appear to be required for AP-1 recruitment in all tissues, suggesting that it is crucially required to enhance Arf1 activation at the trans-Golgi in particular tissues.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Secretórias/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Feminino , Masculino , Estrutura Terciária de Proteína , Transporte Proteico , Fator de Transcrição AP-1/metabolismo
3.
Development ; 137(10): 1765-73, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20430751

RESUMO

The Drosophila anterior-posterior (AP) axis is determined by the polarisation of the stage 9 oocyte and the subsequent localisation of bicoid and oskar mRNAs to opposite poles of the cell. Oocyte polarity has been proposed to depend on the same PAR proteins that generate AP polarity in C. elegans, with a complex of Bazooka (Baz; Par-3), Par-6 and aPKC marking the anterior and lateral cortex, and Par-1 defining the posterior. The function of the Baz complex in oocyte polarity has remained unclear, however, because although baz-null mutants block oocyte determination, egg chambers that escape this early arrest usually develop normal polarity at stage 9. Here, we characterise a baz allele that produces a penetrant polarity phenotype at stage 9 without affecting oocyte determination, demonstrating that Baz is essential for axis formation. The dynamics of Baz, Par-6 and Par-1 localisation in the oocyte indicate that the axis is not polarised by a cortical contraction as in C. elegans, and instead suggest that repolarisation of the oocyte is triggered by posterior inactivation of aPKC or activation of Par-1. This initial asymmetry is then reinforced by mutual inhibition between the anterior Baz complex and posterior Par-1 and Lgl. Finally, we show that mutation of the aPKC phosphorylation site in Par-1 results in the uniform cortical localisation of Par-1 and the loss of cortical microtubules. Since non-phosphorylatable Par-1 is epistatic to uninhibitable Baz, Par-1 seems to function downstream of the other PAR proteins to polarize the oocyte microtubule cytoskeleton.


Assuntos
Padronização Corporal/genética , Polaridade Celular/genética , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Alelos , Animais , Animais Geneticamente Modificados , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Citoesqueleto/genética , Citoesqueleto/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Quinase 3 da Glicogênio Sintase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microtúbulos/metabolismo , Fosforilação/genética , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/genética , Distribuição Tecidual/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Curr Biol ; 16(11): 1090-5, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16753562

RESUMO

The Drosophila anterior-posterior axis is established at stage 7 of oogenesis when the posterior follicle cells signal to polarize the oocyte microtubule cytoskeleton. This requires the conserved PAR-1 kinase, which can be detected at the posterior of the oocyte in immunostainings from stage 9. However, this localization depends on Oskar localization, which requires the earlier PAR-1-dependent microtubule reorganization, indicating that Oskar-associated PAR-1 cannot establish oocyte polarity. Here we analyze the function of the different PAR-1 isoforms and find that only PAR-1 N1 isoforms can completely rescue the oocyte polarity phenotype. Furthermore, PAR-1 N1 is recruited to the posterior cortex of the oocyte at stage 7 in response to the polarizing follicle cell signal, and this requires actin, but not microtubules. This suggests that posterior PAR-1 N1 polarizes the microtubule cytoskeleton. PAR-1 N1 localization is mediated by a cortical targeting domain and a conserved anterior-lateral exclusion signal in its C-terminal linker domain. PAR-1 is also required for the polarization of the C. elegans zygote and is recruited to the posterior cortex in an actin-dependent manner. Our results therefore identify a molecular parallel between axis formation in Drosophila and C. elegans and make Drosophila PAR-1 N1 the earliest known marker for the polarization of the oocyte.


Assuntos
Actinas/fisiologia , Padronização Corporal/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/enzimologia , Drosophila/crescimento & desenvolvimento , Oócitos/enzimologia , Proteínas Quinases/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Sequência Conservada , Drosophila/genética , Proteínas de Drosophila/análise , Proteínas de Drosophila/química , Quinase 3 da Glicogênio Sintase , Microtúbulos/metabolismo , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Quinases/análise , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/análise
5.
Dev Cell ; 5(4): 547-58, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14536057

RESUMO

The anterior-posterior axis of Drosophila becomes polarized early in oogenesis, when the oocyte moves to the posterior of the germline cyst because it preferentially adheres to posterior follicle cells. The source of this asymmetry is unclear, however, since anterior and posterior follicle cells are equivalent until midoogenesis, when Gurken signaling from the oocyte induces posterior fate. Here, we show that asymmetry arises because each cyst polarizes the next cyst through a series of posterior to anterior inductions. Delta signaling from the older cyst induces the anterior polar follicle cells, the anterior polar cells signal through the JAK/STAT pathway to induce the formation of the stalk between adjacent cysts, and the stalk polarizes the younger anterior cyst by inducing the shape change and preferential adhesion that position the oocyte at the posterior. The anterior-posterior axis is therefore established by a relay mechanism, which propagates polarity from one cyst to the next.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Insetos/fisiologia , Proteínas de Membrana/fisiologia , Transdução de Sinais/fisiologia , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Cistos/metabolismo , Drosophila/embriologia , Proteínas de Drosophila , Indução Embrionária/fisiologia , Feminino , Mutação em Linhagem Germinativa/genética , Mutação em Linhagem Germinativa/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Insetos/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Modelos Biológicos , Oócitos/citologia , Oogênese/fisiologia , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Receptores Notch
6.
Biol Open ; 4(4): 474-81, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25795912

RESUMO

The small G proteins of the Arf family play critical roles in membrane trafficking and cytoskeleton organization. However, the function of some members of the family remains poorly understood including Arl5 which is widely conserved in eukaryotes. Humans have two closely related Arl5 paralogues (Arl5a and Arl5b), and both Arl5a and Arl5b localize to the trans-Golgi with Arl5b being involved in retrograde traffic from endosomes to the Golgi apparatus. To investigate the function of Arl5, we have used Drosophila melanogaster as a model system. We find that the single Arl5 orthologue in Drosophila also localizes to the trans-Golgi, but flies lacking the Arl5 gene are viable and fertile. By using both liposome and column based affinity chromatography methods we find that Arl5 interacts with the Golgi-associated retrograde protein (GARP) complex that acts in the tethering of vesicles moving from endosomes to the trans-Golgi network (TGN). In Drosophila tissues the GARP complex is partially displaced from the Golgi when Arl5 is absent, and the late endosomal compartment is enlarged. In addition, in HeLa cells GARP also becomes cytosolic upon depletion of Arl5b. These phenotypes are consistent with a role in endosome-to-Golgi traffic, but are less severe than loss of GARP itself. Thus it appears that Arl5 is one of the factors that directs the recruitment of the GARP complex to the trans-Golgi, and this function is conserved in both flies and humans.

7.
Dev Cell ; 31(3): 358-373, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25453831

RESUMO

The Rab GTPases recruit peripheral membrane proteins to intracellular organelles. These Rab effectors typically mediate the motility of organelles and vesicles and contribute to the specificity of membrane traffic. However, for many Rabs, few, if any, effectors have been identified; hence, their role remains unclear. To identify Rab effectors, we used a comprehensive set of Drosophila Rabs for affinity chromatography followed by mass spectrometry to identify the proteins bound to each Rab. For many Rabs, this revealed specific interactions with Drosophila orthologs of known effectors. In addition, we found numerous Rab-specific interactions with known components of membrane traffic as well as with diverse proteins not previously linked to organelles or having no known function. We confirm over 25 interactions for Rab2, Rab4, Rab5, Rab6, Rab7, Rab9, Rab18, Rab19, Rab30, and Rab39. These include tethering complexes, coiled-coiled proteins, motor linkers, Rab regulators, and several proteins linked to human disease.


Assuntos
Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Proteico , Vesículas Transportadoras/fisiologia
8.
Development ; 134(6): 1161-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17332535

RESUMO

The specification of polar, main-body and stalk follicle cells in the germarium of the Drosophila ovary plays a key role in the formation of the egg chamber and polarisation of its anterior-posterior axis. High levels of Notch pathway activation, resulting from a germline Delta ligand signal, induce polar cells. Here we show that low Notch activation levels, originating from Delta expressed in the polar follicle cells, are required for stalk formation. The metalloprotease Kuzbanian-like, which cleaves and inactivates Delta, reduces the level of Delta signaling between follicle cells, thereby limiting the size of the stalk. We find that Notch activation is required in a continuous fashion to maintain the polar and stalk cell fates. We further demonstrate that mutual antagonism between the Notch and JAK/STAT signaling pathways provides a crucial facet of follicle cell patterning. Notch signaling in polar and main-body follicle cells inhibits JAK/STAT signaling by preventing STAT nuclear translocation, thereby restricting the influence of this pathway to stalk cells. Conversely, signaling by JAK/STAT reduces Notch signaling in the stalk. Thus, variations in the levels of Notch pathway activation, coupled with a continuous balance between the Notch and JAK/STAT pathways, specify the identity of the different follicle cell types and help establish the polarity of the egg chamber.


Assuntos
Drosophila/crescimento & desenvolvimento , Janus Quinases/metabolismo , Oogênese , Folículo Ovariano/crescimento & desenvolvimento , Receptores Notch/agonistas , Fatores de Transcrição STAT/metabolismo , Animais , Padronização Corporal , Polaridade Celular , Drosophila/genética , Drosophila/metabolismo , Feminino , Janus Quinases/antagonistas & inibidores , Oogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA