RESUMO
A non-enveloped virus requires a membrane lesion to deliver its genome into a target cell1. For rotaviruses, membrane perforation is a principal function of the viral outer-layer protein, VP42,3. Here we describe the use of electron cryomicroscopy to determine how VP4 performs this function and show that when activated by cleavage to VP8* and VP5*, VP4 can rearrange on the virion surface from an 'upright' to a 'reversed' conformation. The reversed structure projects a previously buried 'foot' domain outwards into the membrane of the host cell to which the virion has attached. Electron cryotomograms of virus particles entering cells are consistent with this picture. Using a disulfide mutant of VP4, we have also stabilized a probable intermediate in the transition between the two conformations. Our results define molecular mechanisms for the first steps of the penetration of rotaviruses into the membranes of target cells and suggest similarities with mechanisms postulated for other viruses.
Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Redobramento de Proteína , Rotavirus/metabolismo , Rotavirus/ultraestrutura , Internalização do Vírus , Animais , Antígenos Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Dissulfetos/química , Dissulfetos/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo , Rotavirus/química , Rotavirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Vírion/química , Vírion/metabolismo , Vírion/ultraestruturaRESUMO
The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisão , Citocromo P-450 CYP2D6/genética , Haplótipos/genética , Heterozigoto , Humanos , Mutação INDEL , Mutação com Perda de Função , Mutagênese , Fenótipo , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Medicina de Precisão/normas , Controle de Qualidade , Tamanho da Amostra , Estados Unidos , Sequenciamento Completo do Genoma/normasRESUMO
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Assuntos
Antineoplásicos , Linfócitos T CD8-Positivos , Humanos , Camundongos , Animais , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Receptores de Ácidos Lisofosfatídicos/metabolismoRESUMO
The random recombination of immunoglobulin V(D)J gene segments produces unique IgM antibodies that serve as the antigen receptor for each developing B cell. Hence, the newly formed B cell repertoire is comprised of a variety of specificities that display a range of reactivity with self-antigens. Newly generated IgM+ immature B cells that are non-autoreactive or that bind self-antigen with low avidity are licensed to leave the bone marrow with their intact antigen receptor and to travel via the blood to the peripheral lymphoid tissue for further selection and maturation. In contrast, clones with medium to high avidity for self-antigen remain within the marrow and undergo central tolerance, a process that revises their antigen receptor or eliminates the autoreactive B cell altogether. Thus, central B cell tolerance is critical for reducing the autoreactive capacity and avidity for self-antigen of our circulating B cell repertoire. Bone marrow cultures and mouse models have been instrumental for understanding the mechanisms that regulate the selection of bone marrow B cells. Here, we review recent studies that have shed new light on the contribution of the ERK, PI3K, and CXCR4 signaling pathways in the selection of mouse and human immature B cells that either bind or do not bind self-antigen.
Assuntos
Tolerância Central , Receptores de Antígenos de Linfócitos B , Autoimunidade , Linfócitos B , Células da Medula Óssea , Humanos , Células Precursoras de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismoRESUMO
Pharmacogenomic testing has emerged as an aid in clinical decision making for psychiatric providers, but more data is needed regarding its utility in clinical practice and potential impact on patient care. In this cross-sectional study, we determined the real-world prevalence of pharmacogenomic actionability in patients receiving psychiatric care. Potential actionability was based on the prevalence of CYP2C19 and CYP2D6 phenotypes, including CYP2D6 allele-specific copy number variations (CNVs). Combined actionability additionally incorporated CYP2D6 phenoconversion and the novel CYP2C-TG haplotype in patients with available medication data. Across 15,000 patients receiving clinical pharmacogenomic testing, 65% had potentially actionable CYP2D6 and CYP2C19 phenotypes, and phenotype assignment was impacted by CYP2D6 allele-specific CNVs in 2% of all patients. Of 4114 patients with medication data, 42% had CYP2D6 phenoconversion from drug interactions and 20% carried a novel CYP2C haplotype potentially altering actionability. A total of 87% had some form of potential actionability from genetic findings and/or phenoconversion. Genetic variation detected via next-generation sequencing led to phenotype reassignment in 22% of individuals overall (2% in CYP2D6 and 20% in CYP2C19). Ultimately, pharmacogenomic testing using next-generation sequencing identified potential actionability in most patients receiving psychiatric care. Early pharmacogenomic testing may provide actionable insights to aid clinicians in drug prescribing to optimize psychiatric care.
RESUMO
Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.
Assuntos
Linfócitos T CD8-Positivos , Sinapses Imunológicas , Infecções , Lisofosfolipídeos , Neoplasias , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/imunologia , Humanos , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/imunologia , Infecções/imunologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Neoplasias/imunologia , Receptores de Ácidos Lisofosfatídicos/metabolismoRESUMO
Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs are also formed independently of DNA replication during G2/M by Top2-dependent concatenation of cohesed chromatids due to their physical proximity. We demonstrate that, in contrast to G2/M, Top2 removes SCIs from cohesed chromatids at the anaphase onset. Importantly, SCI removal in anaphase requires condensin and coincides with the hyperactivation of condensin DNA supercoiling activity. This is consistent with the longstanding proposal that condensin provides a bias in Top2 function toward decatenation. A comprehensive model for the formation and resolution of toxic SCI entanglements on eukaryotic genomes is proposed.
Assuntos
Adenosina Trifosfatases/genética , Cromossomos Fúngicos/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo II/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Anáfase , Cromátides/metabolismo , Cromátides/ultraestrutura , Segregação de Cromossomos , Cromossomos Fúngicos/ultraestrutura , DNA Topoisomerases Tipo II/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Expressão Gênica , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestruturaRESUMO
Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.
Assuntos
Tolerância Central/fisiologia , Células Precursoras de Linfócitos B/metabolismo , Receptores CXCR4/metabolismo , Animais , Autoanticorpos/metabolismo , Autoantígenos/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Tolerância Central/imunologia , Feminino , Humanos , Tolerância Imunológica/genética , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fenótipo , Células Precursoras de Linfócitos B/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores CXCR4/imunologia , Receptores CXCR4/fisiologia , Transdução de Sinais/genéticaRESUMO
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has revolutionized the gene editing field, making it possible to interrupt, insert or replace a sequence of interest with high precision in the human genome. Its easy design and wide applicability open up a variety of therapeutic alternatives for the treatment of genetic diseases. Indeed, very promising approaches for the correction of hematological disorders have been developed in the recent years, based on the self-renewal and multipotent differentiation properties of hematopoietic stem and progenitor cells, which make this cell subset the ideal target for gene therapy purposes. This technology has been applied in different congenital blood disorders, such as primary immunodeficiencies, X-linked severe combined immunodeficiency, X-linked chronic granulomatous disease or Wiskott-Aldrich syndrome, and inherited bone marrow failure syndromes, such as Fanconi anemia, congenital amegakaryocytic thrombocytopenia or severe congenital neutropenia. Furthermore, CRISPR/Cas9-based gene editing has been implemented successfully as a novel therapy for cancer immunotherapy, by the development of promising strategies such as the use of oncolytic viruses or adoptive cellular therapy to the chimeric antigen receptor-T-cell therapy. Therefore, considering the variety of genes and mutations affected, we can take advantage of the different DNA repair mechanisms by CRISPR/Cas9 in different manners, from homology-directed repair to non-homologous-end-joining to the latest emerging technologies such as base and prime editing. Although the delivery systems into hematopoietic stem and progenitor cells are still the bottleneck of this technology, some of the advances in genome editing shown in this review have already reached a clinical stage and show very promising preliminary results.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , MutaçãoRESUMO
PURPOSE: The American College of Obstetricians and Gynecologists (ACOG) and the American College of Medical Genetics and Genomics (ACMG) suggest carrier screening panel design criteria intended to ensure meaningful results. This study used a data-driven approach to interpret the criteria to identify guidelines-consistent panels. METHODS: Carrier frequencies in >460,000 individuals across 11 races/ethnicities were used to assess carrier frequency. Other criteria were interpreted on the basis of published data. A total of 176 conditions were then evaluated. Stringency thresholds were set as suggested by ACOG and/or ACMG or by evaluating conditions already recommended by ACOG and ACMG. RESULTS: Forty and 75 conditions had carrier frequencies of ≥1 in 100 and ≥1 in 200, respectively; 175 had a well-defined phenotype; and 165 met at least 1 severity criterion and had an onset early in life. Thirty-seven conditions met conservative thresholds, including a carrier frequency of ≥1 in 100, and 74 conditions met permissive thresholds, including a carrier frequency of ≥1 in 200; thus, both were identified as guidelines-consistent panels. CONCLUSION: Clear panel design criteria are needed to ensure quality and consistency among carrier screening panels. Evidence-based analyses of criteria resulted in the identification of guidelines-consistent panels of 37 and 74 conditions.
Assuntos
Etnicidade , Testes Genéticos , Triagem de Portadores Genéticos/métodos , Testes Genéticos/métodos , Genômica , Humanos , PesquisaRESUMO
[This corrects the article DOI: 10.1371/journal.pgen.1007387.].
RESUMO
PURPOSE: Diabetic foot disease is one of the most serious and expensive complications of diabetes. Patient-reported outcome measures (PROMs) analyse patients' perception of their disability, functionality and health. The goal of this work was to conduct a systematic review regarding the specific PROMs related to the evaluation of diabetic foot disease and to extract and analyse the values of their measurement properties. METHODS: Electronic databases included were PubMed, CINAHL, Scopus, PEDro, Cochrane, SciELO and EMBASE. The search terms used were foot, diabet*, diabetic foot, questionnaire, patient-reported outcome, self-care, valid*, reliabil*. Studies whose did not satisfy the Critical Appraisals Skills Programme (CASP) Diagnostic Study Checklist were excluded. The measurement properties extracted were: Internal Consistency, Test-retest, Inter-rater and Intra-rater, Standard Error of Measurement, Minimum Detectable Measurement Difference, Content Validity, Construct Validity, Criterion Validity and Responsiveness. RESULTS: The PROMs selected for this review were 12 questionnaires. The Diabetic foot self-care questionnaire (DFSQ-UMA) and the Questionnaire for Diabetes Related Foot Disease (Q-DFD) were the PROMs that showed the highest number of completed measurement properties. CONCLUSION: According to the results, it is relevant to create specific questionnaires for the evaluation of diabetic foot disease. It seems appropriate to use both DFSQ-UMA and Q-DFD when assessing patients with diabetic foot disease.
Assuntos
Diabetes Mellitus , Pé Diabético , Doenças do Pé , Pé Diabético/terapia , Humanos , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida/psicologia , Inquéritos e QuestionáriosRESUMO
OBJECTIVE: To evaluate the efficacy of three different carrier screening workflows designed to identify couples at risk for having offspring with autosomal recessive conditions. METHODS: Partner testing compliance, unnecessary testing, turnaround time, and ability to identify at-risk couples (ARCs) were measured across all three screening strategies (sequential, tandem, or tandem reflex). RESULTS: A total of 314,100 individuals who underwent carrier screening were analyzed. Sequential, tandem, and tandem reflex screening yielded compliance frequencies of 25.8%, 100%, and 95.9%, respectively. Among 14,595 couples tested in tandem, 42.2% of females were screen-negative, resulting in unnecessary testing of the male partner. In contrast, less than 1% of tandem reflex couples included unnecessary male testing. The median turnaround times were 29.2 days (sequential), 8 days (tandem), and 13.3 days (tandem reflex). The proportion of ARCs detected per total number of individual screens were 0.5% for sequential testing and 1.3% for both tandem and tandem reflex testing. CONCLUSION: The tandem reflex strategy simplifies a potentially complex clinical scenario by providing a mechanism by which providers can maximize partner compliance and the detection of at-risk couples while minimizing workflow burden and unnecessary testing and is more efficacious than both sequential and tandem screening strategies.
Assuntos
Triagem de Portadores Genéticos/métodos , Heterozigoto , Pais/psicologia , Feminino , Triagem de Portadores Genéticos/estatística & dados numéricos , Testes Genéticos/métodos , Humanos , Cuidado Pré-Concepcional/métodos , Cuidado Pré-Concepcional/normas , Cuidado Pré-Concepcional/estatística & dados numéricos , Gravidez , Estudos Retrospectivos , Fluxo de TrabalhoRESUMO
Natural populations often grow, shrink, and migrate over time. Such demographic processes can affect genome-wide levels of genetic diversity. Additionally, genetic variation in functional regions of the genome can be altered by natural selection, which drives adaptive mutations to higher frequencies or purges deleterious ones. Such selective processes affect not only the sites directly under selection but also nearby neutral variation through genetic linkage via processes referred to as genetic hitchhiking in the context of positive selection and background selection (BGS) in the context of purifying selection. While there is extensive literature examining the consequences of selection at linked sites at demographic equilibrium, less is known about how non-equilibrium demographic processes influence the effects of hitchhiking and BGS. Utilizing a global sample of human whole-genome sequences from the Thousand Genomes Project and extensive simulations, we investigate how non-equilibrium demographic processes magnify and dampen the consequences of selection at linked sites across the human genome. When binning the genome by inferred strength of BGS, we observe that, compared to Africans, non-African populations have experienced larger proportional decreases in neutral genetic diversity in strong BGS regions. We replicate these findings in admixed populations by showing that non-African ancestral components of the genome have also been affected more severely in these regions. We attribute these differences to the strong, sustained/recurrent population bottlenecks that non-Africans experienced as they migrated out of Africa and throughout the globe. Furthermore, we observe a strong correlation between FST and the inferred strength of BGS, suggesting a stronger rate of genetic drift. Forward simulations of human demographic history with a model of BGS support these observations. Our results show that non-equilibrium demography significantly alters the consequences of selection at linked sites and support the need for more work investigating the dynamic process of multiple evolutionary forces operating in concert.
Assuntos
Demografia/métodos , Genoma Humano/genética , Seleção Genética/genética , Evolução Molecular , Frequência do Gene/genética , Deriva Genética , Variação Genética/genética , Genética Populacional/métodos , Humanos , Modelos GenéticosRESUMO
A family of iron(III) spin crossover complexes with different counteranions, [Fe(qsal-F)2]A (qsal-F = 4-fluoro-2-[(8-quinolylimino)methyl]phenolate; A = PF6- 1, OTf- 2, NO3- 3, ClO4- 4, BF4- 5, or NCS- 6) have been prepared. All compounds are isostructural and crystallize (triclinic P1Ì space group) with two independent iron(III) centers (Fe1 and Fe2) in the asymmetric unit. No solvent molecules are found in the crystal lattice, allowing us to directly probe the relative influence of anion variation on the spin crossover characteristics. The crystal packing is governed by three types of π-π interactions (type A, type B, and type C), which form undulating 1D chains. Additional interactions (π-F, C-H···O/F, and P4AE) connect the neighboring chains to form a complex supramolecular network. Hirshfeld surface analysis supports these findings. The anions are located between the cationic [Fe(qsal-F)2]+ chains; hence, similar interchain distances (dchain) are observed irrespective of the anion. However, the interplane distances (dplane) are influenced by the crystal packing and increase proportionally with the anion size. Magnetic studies reveal that smaller anions tend to stabilize the low-spin state (NO3- 3, ClO4- 4, and BF4- 5), while larger anions (PF6- 1 and OTf- 2) exhibit lower transition temperatures (Tonset for 1 = 200 K and T for 2 = 190 K) and gradual spin crossovers. The anomaly is 6, where, despite having the smallest anion, it exhibits the lowest transition temperature with magnetic hysteresis in the first step (T1/2↑ = 170 K and T1/2↓ = 157 K). This suggests the size, shape, and supramolecular connectivity of the anion all influence the magnetic properties.
RESUMO
Gene editing constitutes a novel approach for precisely correcting disease-causing gene mutations. Frameshift mutations in COL7A1 causing recessive dystrophic epidermolysis bullosa are amenable to open reading frame restoration by non-homologous end joining repair-based approaches. Efficient targeted deletion of faulty COL7A1 exons in polyclonal patient keratinocytes would enable the translation of this therapeutic strategy to the clinic. In this study, using a dual single-guide RNA (sgRNA)-guided Cas9 nuclease delivered as a ribonucleoprotein complex through electroporation, we have achieved very efficient targeted deletion of COL7A1 exon 80 in recessive dystrophic epidermolysis bullosa (RDEB) patient keratinocytes carrying a highly prevalent frameshift mutation. This ex vivo non-viral approach rendered a large proportion of corrected cells producing a functional collagen VII variant. The effective targeting of the epidermal stem cell population enabled long-term regeneration of a properly adhesive skin upon grafting onto immunodeficient mice. A safety assessment by next-generation sequencing (NGS) analysis of potential off-target sites did not reveal any unintended nuclease activity. Our strategy could potentially be extended to a large number of COL7A1 mutation-bearing exons within the long collagenous domain of this gene, opening the way to precision medicine for RDEB.
Assuntos
Sistemas CRISPR-Cas/genética , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Edição de Genes , Animais , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Éxons/genética , Mutação da Fase de Leitura/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Queratinócitos/metabolismo , Camundongos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/uso terapêuticoRESUMO
BACKGROUND: Disease severity is important when considering genes for inclusion on reproductive expanded carrier screening (ECS) panels. We applied a validated and previously published algorithm that classifies diseases into four severity categories (mild, moderate, severe, and profound) to 176 genes screened by ECS. Disease traits defining severity categories in the algorithm were then mapped to four severity-related ECS panel design criteria cited by the American College of Obstetricians and Gynecologists (ACOG). METHODS: Eight genetic counselors (GCs) and four medical geneticists (MDs) applied the severity algorithm to subsets of 176 genes. MDs and GCs then determined by group consensus how each of these disease traits mapped to ACOG severity criteria, enabling determination of the number of ACOG severity criteria met by each gene. RESULTS: Upon consensus GC and MD application of the severity algorithm, 68 (39%) genes were classified as profound, 71 (40%) as severe, 36 (20%) as moderate, and one (1%) as mild. After mapping of disease traits to ACOG severity criteria, 170 out of 176 genes (96.6%) were found to meet at least one of the four criteria, 129 genes (73.3%) met at least two, 73 genes (41.5%) met at least three, and 17 genes (9.7%) met all four. CONCLUSION: This study classified the severity of a large set of Mendelian genes by collaborative clinical expert application of a trait-based algorithm. Further, it operationalized difficult to interpret ACOG severity criteria via mapping of disease traits, thereby promoting consistency of ACOG criteria interpretation.
Assuntos
Anormalidades Congênitas/classificação , Anormalidades Congênitas/diagnóstico , Genes Controladores do Desenvolvimento , Triagem de Portadores Genéticos/métodos , Aconselhamento Genético , Adolescente , Algoritmos , Criança , Pré-Escolar , Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Feminino , Genes Controladores do Desenvolvimento/genética , Triagem de Portadores Genéticos/normas , Aconselhamento Genético/métodos , Aconselhamento Genético/normas , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Guias de Prática Clínica como Assunto , Gravidez , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/normas , Índice de Gravidade de Doença , Adulto JovemRESUMO
Early recognition of neoantigen-expressing cells is complex, involving multiple immune cell types. In this study, in vivo, we examined how antigen-presenting cell subtypes coordinate and induce an immunological response against neoantigen-expressing cells, particularly in the absence of a pathogen-associated molecular pattern, which is normally required to license antigen-presenting cells to present foreign or self-antigens as immunogens. Using two reductionist models of neoantigen-expressing cells and two cancer models, we demonstrated that natural IgM is essential for the recognition and initiation of adaptive immunity against neoantigen-expressing cells. Natural IgM antibodies form a cellular immune complex with the neoantigen-expressing cells. This immune complex licenses surveying monocytes to present neoantigens as immunogens to CD4+ T cells. CD4+ T helper cells, in turn, use CD40L to license cross-presenting CD40+ Batf3+ dendritic cells to elicit a cytotoxic T cell response against neoantigen-expressing cells. Any break along this immunological chain reaction results in the escape of neoantigen-expressing cells. This study demonstrates the surprising, essential role of natural IgM as the initiator of a sequential signaling cascade involving multiple immune cell subtypes. This sequence is required to coordinate an adaptive immune response against neoantigen-expressing cells.