Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39137242

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide valuable insights into the metabolome of complex biological systems such as organ tissues and cells. However, obtaining metabolite data at single-cell spatial resolutions presents a few technological challenges. Generally, spatial resolution is defined by the increment the sample stage moves between laser ablation spots. Stage movements less than the diameter of the focused laser beam (i.e., oversampling) can improve spatial resolution; however, such oversampling conditions result in a reduction in sensitivity. To overcome this, we combine an oversampling approach with laser postionization (MALDI-2), which allows for both higher spatial resolution and improved analyte ionization efficiencies. This approach provides significant enhancements to sensitivity for various metabolite classes (e.g., amino acids, purines, carbohydrates etc.), with mass spectral intensities from 6 to 8 µm pixel sizes (from a laser spot size of ∼13 µm) being commensurate with or higher than those obtained by conventional MALDI at 20 µm pixel sizes for many different metabolites. This technique has been used to map the distribution of metabolites throughout mouse spinal cord tissue to observe how metabolite localizations change throughout specific anatomical regions, such as those distributed to the somatosensory area of the dorsal horn, white matter, gray matter, and ventral horn. Furthermore, this method is utilized for single-cell metabolomics of human iPSC-derived astrocytes at 10 µm pixel sizes whereby many different metabolites, including nucleotides, were detected from individual cells while providing insight into cellular localizations.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38186747

RESUMO

Introduction: Age related macular degeneration (AMD) causes legal blindness worldwide, with few therapeutic targets in early disease and no treatments for 80% of cases. Extracellular deposits, including drusen and subretinal drusenoid deposits (SDD; also called reticular pseudodrusen), disrupt cone and rod photoreceptor functions and strongly confer risk for advanced disease. Due to the differential cholesterol composition of drusen and SDD, lipid transfer and cycling between photoreceptors and support cells are candidate dysregulated pathways leading to deposit formation. The current study explores this hypothesis through a comprehensive lipid compositional analysis of SDD. Methods: Histology and transmission electron microscopy were used to characterize the morphology of SDD. Highly sensitive tools of imaging mass spectrometry (IMS) and nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) in positive and negative ion modes were used to spatially map and identify SDD lipids, respectively. An interpretable supervised machine learning approach was utilized to compare the lipid composition of SDD to regions of uninvolved retina across 1873 IMS features and to automatically discern candidate markers for SDD. Immunohistochemistry (IHC) was used to localize secretory phospholipase A2 group 5 (PLA2G5). Results: Among the 1873 detected features in IMS data, three lipid classes, including lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE) and lysophosphatidic acid (LysoPA) were observed nearly exclusively in SDD while presumed precursors, including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) lipids were detected in SDD and adjacent photoreceptor outer segments. Molecular signals specific to SDD were found in central retina and elsewhere. IHC results indicated abundant PLA2G5 in photoreceptors and retinal pigment epithelium (RPE). Discussion: The abundance of lysolipids in SDD implicates lipid remodeling or degradation in deposit formation, consistent with ultrastructural evidence of electron dense lipid-containing structures distinct from photoreceptor outer segment disks and immunolocalization of secretory PLA2G5 in photoreceptors and RPE. Further studies are required to understand the role of lipid signals observed in and around SDD.

3.
BMJ Open ; 13(12): e072291, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135320

RESUMO

OBJECTIVE: Protein-energy malnutrition and the subsequent muscle wasting (sarcopenia) are common ageing complications. It is knowing to be also associated with dementia. Our programme will test the cytoprotective functions of vitamin E combined with the cortisol-lowering effect of chocolate polyphenols (PP), in combination with muscle anabolic effect of adequate dietary protein intake and physical exercise to prevent the age-dependent decline of muscle mass and its key underpinning mechanisms including mitochondrial function, and nutrient metabolism in muscle in the elderly. METHODS AND ANALYSIS: In 2020, a 6-month double-blind randomised controlled trial in 75 predementia older people was launched to prevent muscle mass loss, in respond to the 'Joint Programming Initiative A healthy diet for a healthy life'. In the run-in phase, participants will be stabilised on a protein-rich diet (0.9-1.0 g protein/kg ideal body weight/day) and physical exercise programme (high-intensity interval training specifically developed for these subjects). Subsequently, they will be randomised into three groups (1:1:1). The study arms will have a similar isocaloric diet and follow a similar physical exercise programme. Control group (n=25) will maintain the baseline diet; intervention groups will consume either 30 g/day of dark chocolate containing 500 mg total PP (corresponding to 60 mg epicatechin) and 100 mg vitamin E (as RRR-alpha-tocopherol) (n=25); or the high polyphenol chocolate without additional vitamin E (n=25). Muscle mass will be the primary endpoint. Other outcomes are neurocognitive status and previously identified biomolecular indices of frailty in predementia patients. Muscle biopsies will be collected to assess myocyte contraction and mitochondrial metabolism. Blood and plasma samples will be analysed for laboratory endpoints including nutrition metabolism and omics. ETHICS AND DISSEMINATION: All the ethical and regulatory approvals have been obtained by the ethical committees of the Azienda Ospedaliera Universitaria Integrata of Verona with respect to scientific content and compliance with applicable research and human subjects' regulation. Given the broader interest of the society toward undernutrition in the elderly, we identify four main target audiences for our research activity: national and local health systems, both internal and external to the project; targeted population (the elderly); general public; and academia. These activities include scientific workshops, public health awareness campaigns, project dedicated website and publication is scientific peer-review journals. TRIAL REGISTRATION NUMBER: NCT05343611.


Assuntos
Chocolate , Desnutrição Proteico-Calórica , Idoso , Humanos , Proteínas Alimentares , Vitamina E/uso terapêutico , Exercício Físico , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA