Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Plant Biol ; 16(1): 130, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277533

RESUMO

BACKGROUND: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. RESULTS: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. CONCLUSIONS: The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.


Assuntos
Fluxo Gênico , Variação Genética , Malus/genética , Europa (Continente) , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Malus/classificação , Malus/embriologia , Malus/metabolismo , Repetições de Microssatélites , Filogenia
2.
Hereditas ; 151(4-5): 81-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25363275

RESUMO

The genetic diversity of 23 chickpea accessions representing Kyrgyz landraces and cultivars, ICARDA breeding lines, Spanish and Turkish cultivars was characterized using nine microsatellite (SSR) markers which generated a total of 122 alleles. The number of alleles (Na) per locus varied from 9 to 20. The observed heterozygosity (Ho) ranged between 0.05 and 0.43 (average 0.13) whereas both the expected heterozygosity (He) and polymorphic information content (PIC) ranged from 0.71 to 0.90 (average 0.83). Analysis of molecular variance (AMOVA) showed that 62% of the total genetic variation was found within accessions while the remaining 38% was found among accessions. Principal coordinate analysis (PCoA) indicated the presence of two groups. The two Kyrgyz cultivars were found apart from these groups. Cluster analysis generally confirmed the results of PCoA and also separated the Kyrgyz cultivars from the subcluster formed by Kyrgyz landraces and the subclusters formed by breeding lines from ICARDA along with landraces from Turkey and Spain. In addition, protein content and mineral concentration were determined. Protein content and mineral concentrations for Ca, S, Mg, P, K, Fe, Mn, Cu and Zn varied significantly among accessions. The results show that Kyrgyz germplasm provides a source of diversity for improvement of chickpea.


Assuntos
Cicer/genética , Variação Genética , Repetições de Microssatélites , Alelos , Cruzamento , DNA de Plantas/genética , Heterozigoto , Quirguistão , Análise de Componente Principal , Análise de Sequência de DNA , Espanha , Turquia
3.
Front Plant Sci ; 15: 1354418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390292

RESUMO

As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA