Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(35): e202306916, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37433751

RESUMO

The practical synthesis of structurally controlled hyperbranched polymers (HBPs) by organotellurium-mediated radical polymerization (TERP) in water under emulsion conditions is reported. Copolymerization of vinyltelluride named evolmer, which induces controlled branch structure, and acrylates with TERP chain transfer agent (CTA) in water afforded HBPs having dendron structure. The molecular weight, dispersity, branch number, and branch length of the HBPs were controlled by changing the amount of CTA, evolmer, and acrylate monomers. HB-poly(butyl acrylate)s (HBPBAs) with up to the 8th generation having an average of 255 branches were successfully synthesized. As the monomer conversion reached nearly quantitative and the obtained polymer particles were well dispersed in water, the method is highly suitable for synthesizing topological block polymers, block polymers consisting of different topologies. Thus, linear-block-HB, HB-block-linear, and HB-block-HB-PBAs with the controlled structure were successfully synthesized by adding the second monomer(s) to the macro-CTA. The intrinsic viscosity of the resulting homo- and topological block PBAs was systematically controlled by the degree of the branch, the branch length, and the topology. Therefore, the method opens the possibility of obtaining various HBPs with diverse branch structures and tuning the polymer properties by the polymer topology.

2.
Angew Chem Int Ed Engl ; 62(29): e202305127, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37194984

RESUMO

Stochastic simulation of the formation process of hyperbranched polymers (HBPs) based on the reversible deactivation radical polymerization (RDRP) using a branch-inducing monomer, evolmer, has been carried out. The simulation program successfully reproduced the change of dispersities (Ds) during the polymerization process. Furthermore, the simulation suggested that the observed Ds (=1.5-2) are due to the distribution of the number of branches instead of undesired side reactions, and that the branch structures are well controlled. In addition, the analysis of the polymer structure reveals that the majority of HBPs have structures close to the ideal one. The simulation also suggested the slight dependence of branch density on molecular weight, which was experimentally confirmed by synthesizing HBPs with an evolmer having phenyl group.

3.
Angew Chem Int Ed Engl ; 57(4): 962-966, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29124836

RESUMO

Ab initio emulsion polymerization of methyl methacrylate (MMA) using a water-soluble organotellurium chain transfer agent in the presence of the surfactant Brij 98 in water is reported. Polymerization proceeded under both thermal and visible light-irradiation conditions, giving poly(methyl methacrylate) (PMMA) with controlled molecular weight and low dispersity (D<1.5). Despite the formation of an opaque latex, the photoactivation of the organotellurium dormant species took place efficiently, as demonstrated by the quantitative monomer conversion and temporal control. Control of polymer particle size (PDI<0.030) was also achieved using a semi-batch monomer addition process. The PMMA polymer in the particles retained high end-group fidelity and was successfully used for the synthesis of block copolymers.

4.
J Struct Biol ; 185(3): 303-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24345346

RESUMO

α-Helical coiled coil and ß-sheet complexes are essential structural building elements of silk proteins produced by different species of the Hymenoptera. Beside X-ray scattering at wide and small angles we applied cryo-electron diffraction and microscopy to demonstrate the presence and the details of such structures in silk of the giant hornet Vespa mandarinia japonica. Our studies on the assembly of the fibrous silk proteins and their internal organization in relation to the primary chain structure suggest a 172 Å pitch supercoil consisting of four intertwined alanine-rich α-helical strands. The axial periodicity may adopt even multiples of the pitch value. Coiled coil motifs form the largest portion of the hornet silk structure and are aligned nearly parallel to the cocoon fiber axis in the same way as the membrane-like parts of the cocoon are molecularly orientated in the spinning direction. Supercoils were found to be associated with ß-crystals, predominantly localized in the l-serine-rich chain sequences terminating each of the four predominant silk proteins. Such ß-sheet blocks are considered resulting from transformation of random coil molecular sequences due to the action of elongational forces during the spinning process.


Assuntos
Proteínas de Insetos/química , Seda/química , Vespas/química , Animais , Microscopia Crioeletrônica , Proteínas de Insetos/ultraestrutura , Estrutura Secundária de Proteína , Difração de Raios X
5.
Chemistry ; 20(49): 16138-46, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25302995

RESUMO

A biscalix[5]arene-C60 supramolecular structure was utilized for the development of supramolecular fullerene polymers. Di- and tritopic hosts were developed to generate the linear and network supramolecular polymers through the complexation of a dumbbell-shaped fullerene. The molecular association between the hosts and the fullerene were carefully studied by using (1) H NMR, UV/Vis absorption, and fluorescence spectroscopy. The formation of the supramolecular fullerene polymers and networks was confirmed by diffusion-ordered (1) H NMR spectroscopy (DOSY) and solution viscometry. Upon concentrating the mixtures of di- or tritopic hosts and dumbbell-shaped fullerene in the range of 1.0-10 mmol L(-1) , the diffusion coefficients of the complexes decreased, and the solution viscosities increased, suggesting that large polymeric assemblies were formed in solution. Scanning electron microscopy (SEM) was used to image the supramolecular fullerene polymers and networks. Atomic force microscopy (AFM) provided insight into the morphology of the supramolecular polymers. A mixture of the homoditopic host and the fullerene resulted in fibers with a height of (1.4±0.1) nm and a width of (5.0±0.8) nm. Interdigitation of the alkyl side chains provided secondary interchain interactions that facilitated supramolecular organization. The homotritopic host generated the supramolecular networks with the dumbbell-shaped fullerene. Honeycomb sheet-like structures with many voids were found. The growth of the supramolecular polymers is evidently governed by the shape, dimension, and directionality of the monomers.

6.
ACS Macro Lett ; 11(12): 1331-1335, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36355410

RESUMO

Structurally controlled high-molecular-weight (HMW) polystyrenes (PSts) and block copolymers consisting of HMW PSt segments were successfully synthesized by emulsion organotellurium-mediated radical polymerization (TERP). The hydrophilicity of the organotellurium group of TERP chain transfer agents (CTAs) was important for success, and CTAs 1b and 1c with di- and tetraethylene glycol units were suitable. By using 1b and 1c and using hexadecyltrimethylammonium bromide (CTAB) as the surfactant, PSts with MWs over 1 million and with low dispersity (D < 1.6) were synthesized with >96% monomer conversion. Because of the high monomer conversion, high end-group fidelity, and rapid monomer diffusion to polymer particles, HMW block copolymers with low dispersity were successfully synthesized by adding a second monomer after converting the first monomer without isolating the macroinitiators. Despite recent developments in reversible-deactivation radical polymerization (RDRP), the synthesis of HMW polymers, particularly PSts and block copolymers, has been a formidable challenge. This method provides a valuable route for fabricating polymer materials based on HMW PSts.


Assuntos
Polímeros , Poliestirenos , Emulsões , Polimerização , Peso Molecular
7.
ACS Macro Lett ; 9(10): 1433-1438, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35653659

RESUMO

Nanocellular polymer foams have shown significant potential for industrial applications because of their superior thermal, mechanical, and optical properties. Some of these properties may be further improved by enhancing the ordering of cell structures. However, it is challenging for conventional foaming methods to control both the cell size and ordering at the nanoscale. Here, we show an innovative method to produce highly ordered nanocellular polymer foams by incorporating the self-assembly of an asymmetric diblock copolymer with the UV-induced chemical foaming technique. The minor domains are designed to generate a gaseous compound from the partial cleavage of the functional group. It is demonstrated that the gas-producing reaction can be accelerated at a temperature low enough to prevent melting of the whole self-assembled template, by mixing a small amount of photoacid generator into the copolymer, followed by UV irradiation. The result is the production of polymer foams with the nanoscale cells highly aligned to the self-assembled domains.

8.
RSC Adv ; 8(71): 40570-40580, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-35557906

RESUMO

The thermal behavior of poly(vinylidene fluoride)/1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide/lithium bis(trifluoromethylsulfonyl)amide (PVDF/[C2mim][TFSA]/LiTFSA) gels, prepared by cooling from the hot solution, was investigated with various concentrations of LiTFSA (C LiTFSA). The peak melting temperature (T m) of the gels shifted toward higher temperatures with increased C LiTFSA. However, the thickness of lamellar crystal was found to decrease with the increase in C LiTFSA, which meant that the increase in T m was not caused by the thickening of lamellar crystal. Furthermore, we found the appearance of domains above T m in the high C LiTFSA region (≥20 wt%), which was a lithium ion-rich phase caused by the phase separation. Therefore, it is considered on the basis of Nishi-Wang equation that an increase in the interaction parameter with increasing C LiTFSA toward the phase separation increased the T m. The phase-separated domains competed with the subsequent crystallization, which resulted in the formation of micrometer-sized pores and nanometer-sized voids in the spherulites. Spectral measurements revealed that PVDF was not specifically solvated in the solution state above the crystallization temperature, while [TFSA]- anion formed a complex with lithium ion irrespective of the PVDF content. These results led to the consideration that an increase in the interaction parameter might be caused by the strong interaction between lithium ion and [TFSA]- anion to form the complex, which would also lower the interaction between PVDF and [TFSA]- anion.

9.
Nat Commun ; 8(1): 1863, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192274

RESUMO

Hyperbranched polymers (HBPs) have attracted significant attention because of their characteristic topological structure associated with their unique physical properties compared with those of the corresponding linear polymers. Dendrimers are the most structurally controlled HBPs, but the necessity of a stepwise synthesis significantly limits their applications in materials science. Several methods have been developed to synthesize HBPs by a one-step procedure, as exemplified by the use of AB2 monomers and AB' inimers under condensation and self-condensing vinyl polymerization conditions. However, none of these methods provides structurally controlled HBPs over the three-dimensional (3D) structure, i.e., molecular weight, dispersity, number of branching points, branching density, and chain-end functionalities, except under special conditions. Here, we introduce a monomer design concept involving two functional groups with hierarchical reactivity and demonstrate the controlled synthesis of dendritic HBPs over the 3D structure by the copolymerization of the designed monomer and acrylates under living radical polymerization conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA