Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367819

RESUMO

"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels. The electrospinning process results in partially aligned but interpenetrating fiber network with minimal internal phase separation, leading to anisotropic but strong mechanical properties even in the hydrated state; apparent ultimate tensile strengths of the swollen scaffolds ranged from 429 ± 39 kPa in the direction of fiber alignment (longitudinal) to 86 ± 25 kPa perpendicular to fiber alignment (cross-longitudinal), typical of PCL-based scaffolds and enabling efficient suture retention in different directions. However, contact angle measurements indicate hydrogel-like interfacial properties due to the presence of the interpenetrating POEGMA network. C2C12 myoblast proliferation in the PCL-POEGMA scaffolds was 50% higher than that observed on PCL-only scaffolds, a result attributed to the presence of the more hydrophilic POEGMA interpenetrating nanofiber network. Overall, this method is demonstrated to represent a facile single-step strategy to fabricate strong macroporous but still interfacially hydrophilic scaffolds for tissue engineering applications.

2.
ACS Appl Bio Mater ; 7(3): 1947-1957, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38394042

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is associated with high levels of morbidity and is considered a difficult-to-treat infection, often requiring nonstandard treatment regimens and antibiotics. Since over 40% of the emerging antibiotic compounds have insufficient solubility that limits their bioavailability and thus efficacy through oral or intravenous administration, it is crucial that alternative drug delivery products be developed for wound care applications. Existing effective treatments for soft tissue MRSA infections, such as fusidic acid (FA), which is typically administered orally, could also benefit from alternative routes of administration to improve local efficacy and bioavailability while reducing the required therapeutic dose. Herein, we report an antimicrobial poly(oligoethylene glycol methacrylate) (POEGMA)-based composite hydrogel loaded with fusidic acid-encapsulating self-assembled polylactic acid-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PLA-POEGMA) nanoparticles for the treatment of MRSA-infected skin wounds. The inclusion of the self-assembled nanoparticles (380 nm diameter when loaded with fusidic acid) does not alter the favorable mechanical properties and stability of the hydrogel in the context of its use as a wound dressing, while fusidic acid (FA) can be released from the hydrogel over ∼10 h via a diffusion-controlled mechanism. The antimicrobial studies demonstrate a clear zone of inhibition in vitro and a 1-2 order of magnitude inhibition of bacterial growth in vivo in an MRSA-infected full-thickness excisional murine wound model even at very low antibiotic doses. Our approach thus can both circumvent challenges in the local delivery of hydrophobic antimicrobial compounds and directly deliver antimicrobials into the wound to effectively combat methicillin-resistant infections using a fraction of the drug dose required using other clinically relevant strategies.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Polietilenoglicóis , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Fusídico/farmacologia , Ácido Fusídico/uso terapêutico , Hidrogéis/química
3.
Acta Biomater ; 128: 250-261, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945881

RESUMO

Structured hydrogel sheets offer the potential to mimic the mechanics and morphology of native cell environments in vitro; however, controlling the morphology of such sheets across multiple length scales to give cells consistent multi-dimensional cues remains challenging. Here, we demonstrate a simple two-step process based on sequential electrospinning and thermal wrinkling to create nanocomposite poly(oligoethylene glycol methacrylate)/cellulose nanocrystal hydrogel sheets with a highly tunable multi-scale wrinkled (micro) and fibrous (nano) morphology. By varying the time of electrospinning, rotation speed of the collector, and geometry of the thermal wrinkling process, the hydrogel nanofiber density, fiber alignment, and wrinkle geometry (biaxial or uniaxial) can be independently controlled. Adhered C2C12 mouse myoblast muscle cells display a random orientation on biaxially wrinkled sheets but an extended morphology (directed preferentially along the wrinkles) on uniaxially wrinkled sheets. While the nanofiber orientation had a smaller effect on cell alignment, parallel nanofibers promoted improved cell alignment along the wrinkle direction while perpendicular nanofibers disrupted alignment. The highly tunable structures demonstrated are some of the most complex morphologies engineered into hydrogels to-date without requiring intensive micro/nanofabrication approaches and offer the potential to precisely regulate cell-substrate interactions in a "2.5D" environment (i.e. a surface with both micro- and nano-structured topographies) for in vitro cell screening or in vivo tissue regeneration. STATEMENT OF SIGNIFICANCE: While structured hydrogels can mimic the morphology of natural tissues, controlling this morphology over multiple length scales remains challenging. Furthermore, the incorporation of secondary morphologies within individual hydrogels via simple manufacturing techniques would represent a significant advancement in the field of structured biomaterials and an opportunity to study complex cell-biomaterial interactions. Herein, we leverage a two-step process based on electrospinning and thermal wrinkling to prepare structured hydrogels with microscale wrinkles and nanoscale fibers. Fiber orientation/density and wrinkle geometry can be independently controlled during the electrospinning and thermal wrinkling processes respectively, demonstrating the flexibility of this technique for creating well-defined multiscale hydrogel structures. Finally, we show that while wrinkle geometry is the major determinant of cell alignment, nanofiber orientation also plays a role in this process.


Assuntos
Nanofibras , Nanopartículas , Animais , Materiais Biocompatíveis , Celulose , Hidrogéis , Camundongos
4.
Acta Biomater ; 112: 101-111, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522716

RESUMO

While the benefits of both hydrogels and drug delivery to enhance wound healing have been demonstrated, the highly hydrophilic nature of hydrogels creates challenges with respect to the effective loading and delivery of hydrophobic drugs beneficial to wound healing. Herein, we utilize pressurized gas expanded liquid (PGX) technology to produce very high surface area (~200 m2/g) alginate scaffolds and describe a method for loading the scaffolds with ibuprofen (via adsorptive precipitation) and crosslinking them (via calcium chelation) to create a hydrogel suitable for wound treatment and hydrophobic drug delivery. The high surface area of the PGX-processed alginate scaffold facilitates >8 wt% loading of ibuprofen into the scaffold and controlled in vitro ibuprofen release over 12-24 h. In vivo burn wound healing assays demonstrate significantly accelerated healing with ibuprofen-loaded PGX-alginate/calcium scaffolds relative to both hydrogel-only and untreated controls, demonstrating the combined benefits of ibuprofen delivery to suppress inflammation as well as the capacity of the PGX-alginate/calcium hydrogel to maintain wound hydration and facilitate continuous calcium release to the wound. The use of PGX technology to produce highly porous scaffolds with increased surface areas, followed by adsorptive precipitation of a hydrophobic drug onto the scaffolds, offers a highly scalable method of creating medicated wound dressings with high drug loadings. STATEMENT OF SIGNIFICANCE: While medicated hydrogel-based wound dressings offer clear advantages in accelerating wound healing, the inherent incompatibility between conventional hydrogels and many poorly water-soluble drugs of relevance in wound healing remains a challenge. Herein, we leveraged supercritical fluids-based strategies to both process and subsequently impregnate alginate, followed by post-crosslinking to form a hydrogel, to create a very high surface area alginate hydrogel scaffold loaded with high hydrophobic drug contents (here, >8 wt% ibuprofen) without the need for any pore-forming additives. The impregnated scaffolds significantly accelerated burn wound healing while also promoting regeneration of the native skin morphology. We anticipate this approach can be leveraged to load clinically-relevant and highly bioavailable dosages of hydrophobic drugs in hydrogels for a broad range of potential applications.


Assuntos
Queimaduras , Hidrogéis , Alginatos , Bandagens , Queimaduras/tratamento farmacológico , Humanos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA