Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 142(2): 256-69, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20619447

RESUMO

The endoplasmic reticulum (ER) plays an essential role in the production of lipids and secretory proteins. Because the ER cannot be generated de novo, it must be faithfully transmitted or divided at each cell division. Little is known of how cells monitor the functionality of the ER during the cell cycle or how this regulates inheritance. We report here that ER stress in S. cerevisiae activates the MAP kinase Slt2 in a new ER stress surveillance (ERSU) pathway, independent of the unfolded protein response. Upon ER stress, ERSU alters the septin complex to delay ER inheritance and cytokinesis. In the absence of Slt2 kinase, the stressed ER is transmitted to the daughter cell, causing the death of both mother and daughter cells. Furthermore, Slt2 is activated via the cell surface receptor Wsc1 by a previously undescribed mechanism. We conclude that the ERSU pathway ensures inheritance of a functional ER.


Assuntos
Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Fisiológico
2.
J Biol Chem ; 285(23): 17545-55, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20382742

RESUMO

When unfolded proteins accumulate in the endoplasmic reticulum (ER) causing ER stress, the unfolded protein response (UPR) responds rapidly to induce a transcriptional program that functions to alleviate the stress. However, under extreme conditions, when UPR activation is not sufficient to alleviate ER stress, the stress may persist long term. Very little is known about how the cell responds to persistent ER stress that is not resolved by the immediate activation of the UPR. We show that Hog1 MAP kinase becomes phosphorylated during the late stage of ER stress and helps the ER regain homeostasis. Although Hog1 is well known to function in osmotic stress and cell wall integrity pathways, we show that the activation mechanism for Hog1 during ER stress is distinct from both of these pathways. During late stage ER stress, upon phosphorylation, Hog1 translocates into the nucleus and regulates gene expression. Subsequently, Hog1 returns to the cytoplasm, where its phosphorylation levels remain high. From its cytoplasmic location, Hog1 contributes to the activation of autophagy by enhancing the stability of Atg8, a critical autophagy protein. Thus, Hog1 coordinates a multifaceted response to persistent ER stress.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Autofagia , Família da Proteína 8 Relacionada à Autofagia , Citoplasma/metabolismo , Proteínas de Choque Térmico/química , Sistema de Sinalização das MAP Quinases , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Genéticos , Fosforilação , Desnaturação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas
3.
Infect Control Hosp Epidemiol ; 42(9): 1046-1052, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32618530

RESUMO

OBJECTIVE: To describe the pattern of transmission of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) during 2 nosocomial outbreaks of coronavirus disease 2019 (COVID-19) with regard to the possibility of airborne transmission. DESIGN: Contact investigations with active case finding were used to assess the pattern of spread from 2 COVID-19 index patients. SETTING: A community hospital and university medical center in the United States, in February and March, 2020, early in the COVID-19 pandemic. PATIENTS: Two index patients and 421 exposed healthcare workers. METHODS: Exposed healthcare workers (HCWs) were identified by analyzing the electronic medical record (EMR) and conducting active case finding in combination with structured interviews. Healthcare coworkers (HCWs) were tested for COVID-19 by obtaining oropharyngeal/nasopharyngeal specimens, and RT-PCR testing was used to detect SARS-CoV-2. RESULTS: Two separate index patients were admitted in February and March 2020, without initial suspicion for COVID-19 and without contact or droplet precautions in place; both patients underwent several aerosol-generating procedures in this context. In total, 421 HCWs were exposed in total, and the results of the case contact investigations identified 8 secondary infections in HCWs. In all 8 cases, the HCWs had close contact with the index patients without sufficient personal protective equipment. Importantly, despite multiple aerosol-generating procedures, there was no evidence of airborne transmission. CONCLUSION: These observations suggest that, at least in a healthcare setting, most SARS-CoV-2 transmission is likely to take place during close contact with infected patients through respiratory droplets, rather than by long-distance airborne transmission.


Assuntos
COVID-19 , Infecção Hospitalar , Infecção Hospitalar/epidemiologia , Pessoal de Saúde , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA