Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 83(11): 5574-80, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19279087

RESUMO

KAP1 is an essential cofactor of KRAB zinc finger proteins, a family of vertebrate-specific epigenetic repressors of largely unknown functions encoded in the hundreds by the mouse and human genomes. So far, KRAB/KAP1-mediated gene regulation has been studied within the environment of chromosomal DNA. Here we demonstrate that KRAB/KAP1 regulation is fully functional within the context of episomal DNA, such as adeno-associated viral and nonintegrated lentiviral vectors, and is correlated with histone modifications typically associated with this epigenetic regulator.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Plasmídeos/genética , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , DNA/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteína 28 com Motivo Tripartido
2.
Ann Clin Transl Neurol ; 2(2): 167-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25750921

RESUMO

OBJECTIVE: Amyotrophic lateral sclerosis is an incurable disorder mainly characterized by motoneuron degeneration. Mutations in the superoxide dismutase 1 (SOD1) gene account for 20% of familial forms of the disease. Mutant SOD1 exerts multiple pathogenic effects through the gain of toxic properties in both neurons and glial cells. Here, we compare AAV-based gene therapy suppressing expression of mutant SOD1 in either motoneurons or astrocytes. METHODS: AAV vectors encoding microRNA against human SOD1 were administered to (G93) (A)SOD1 mice either by intracerebroventricular injections in pups or by lumbar intrathecal injections in adults. Vector systems were designed to suppress SOD1 expression predominantly in either spinal motoneurons or astrocytes. Electrophysiological and behavioral tests were performed on treated animals to evaluate disease progression. RESULTS: Following vector injection in (G93) (A)SOD1 pups, efficient silencing of SOD1 expression was achieved in motoneurons and/or astrocytes. Most complete protection of motor units was obtained when targeting human SOD1 predominantly in motoneurons. Suppressing SOD1 mainly in astrocytes led to preserved muscle innervation despite only partial protection of spinal motoneurons. In both cases, injection in pups led to full recovery of neuromuscular function and significantly prolonged survival. Vector injections in adult mice also achieved significant protection of neuromuscular function, which was highest when motoneurons were targeted. INTERPRETATION: These results suggest that AAV-mediated SOD1 silencing is an effective approach to prevent motoneuron degeneration caused by SOD1 mutation. AAV vectors suppressing SOD1 in motoneurons delay disease onset and show effective neuroprotection. On the other hand, AAV-based SOD1 silencing in astrocytes rescues neuromuscular function following initial denervation.

3.
Hum Gene Ther ; 25(2): 109-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24191919

RESUMO

In the context of motoneuron diseases, gene delivery as an experimental or therapeutic approach is hindered by the challenge to specifically target cell populations that are widely distributed along the spinal cord. Further complicating the task, transgenes often need to be delivered to motoneurons and/or glial cells to address the non-cell-autonomous mechanisms involved in disease pathogenesis. Intracerebroventricular (ICV) injection of recombinant adeno-associated viruses (AAVs) in newborn mice allows distributing viral vectors throughout the central nervous system while limiting undesired transduction of peripheral organs. Here, we show that by combining the appropriate set of AAV serotype and promoter, specific transgene expression can be achieved in either motoneurons or astrocytes along the whole mouse spinal cord. ICV injection of recombinant AAV6 with the cytomegalovirus (cmv) promoter preferentially targets motoneurons, whereas AAV9 particles combined with the astrocyte-specific gfaABC1D promoter lead to significant transgene expression selectively targeted to astrocytes. Importantly, ICV coinjection of both AAV6-cmv and AAV9-gfaABC1D results in segregated expression of two different transgenes in motoneurons and astrocytes, respectively. Relevance of viral vector delivery via the cerebrospinal fluid was further investigated in young nonhuman primates. Intracisternal injection of recombinant AAV6-cmv led to robust cervical transduction of motoneurons, highlighting the potential of this approach for gene therapy and modeling of motoneuron diseases.


Assuntos
Dependovirus/genética , Expressão Gênica , Vetores Genéticos/genética , Medula Espinal/metabolismo , Transdução Genética , Transgenes , Animais , Astrócitos/metabolismo , Chlorocebus aethiops , Dosagem de Genes , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Neurônios Motores/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas
4.
Neuron ; 81(2): 333-48, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24462097

RESUMO

Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Fatores Etários , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Toxina da Cólera/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Metaloproteinase 9 da Matriz/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Denervação Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Neurodegenerativas/patologia , Fosfopiruvato Hidratase/metabolismo , Superóxido Dismutase/genética , Fatores de Transcrição/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA