Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 36(21): 5809-5819, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32407106

RESUMO

A silane coupling-based procedure for decoration of an insulator surface containing abundant hydroxy groups by constructing redox-active self-assembled monolayers (SAMs) is described. A newly synthesized ferrocene (Fc) derivative containing a triethoxysilyl group designated FcSi was immobilized on SiO2/Si by a simple operation that involved immersing the substrate in a toluene solution of the Fc silane coupling reagent and then rinsing the resulting substrate. X-ray photoelectron spectroscopy (XPS) measurements confirmed that the Fc group was immobilized on SiO2/Si in the Fe(II) state. Cyclic voltammetry measurements showed that the Fc groups were electrically insulated from the Si electrode by the SiO2 layer. The FcSi on SiO2/Si structures were found to serve as a good scaffold for formation of organic semiconductor thin films by vacuum thermal evaporation of C8-BTBT (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene), which is well-known as an organic field-effect transistor (OFET) material. The X-ray diffraction profile indicated that the conventional standing-up conformation of the C8-BTBT molecules perpendicular to the substrates was maintained in the thin films formed on FcSi@SiO2/Si. Further vacuum thermal evaporation of Au provided an FcSi-based OFET structure with good transfer characteristics. The FcSi-based OFET showed pronounced source-drain current hysteresis between the forward and backward scans. The degree of this hysteresis was varied reversibly via gate bias manipulation, which was presumably accompanied by trapping and detrapping of hole carriers at the Fc-decorated SiO2 surface. These findings provide new insights into application of redox-active SAMs to nonvolatile OFET memories while also creating new interfaces through junctions with functional thin films, in which the underlying redox-active SAMs play supporting roles.

2.
Inorg Chem ; 59(24): 17945-17957, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33169615

RESUMO

Chemical modification of insulating material surfaces is an important methodology to improve the performance of organic field-effect transistors (OFETs). However, few redox-active self-assembled monolayers (SAMs) have been constructed on gate insulator film surfaces, in contrast to the numerous SAMs formed on many types of conducting electrodes. In this study, we report a new approach to introduce a π-conjugated organic fragment in close proximity to an insulating material surface via a transition metal center acting as a one-atom anchor. On the basis of the reported coordination chemistry of a catecholato complex of Pt(II) in solution, we demonstrate that ligand exchange can occur on an insulating material surface, affording SAMs on the SiO2 surface derived from a newly synthesized Pt(II) complex containing a benzothienobenzothiophene (BTBT) framework in the catecholato ligand. The resultant SAMs were characterized in detail by water contact angle measurements, X-ray photoelectron spectroscopy, atomic force microscopy, and cyclic voltammetry. The SAMs served as good scaffolds of π-conjugated pillars for forming thin films of a well-known organic semiconductor C8-BTBT (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene), accompanied by the engagements of the C8-BTBT molecules with the SAMs containing the common BTBT framework at the first layer on SiO2. OFETs containing the SAMs displayed improved performance in terms of hole mobility and onset voltage, presumably because of the unique interfacial structure between the organic semiconducting and inorganic insulating layers. These findings provide important insight into creating new elaborate interfaces through installing coordination chemistry in solution to solid surfaces, as well as OFET design by considering the compatibility between SAMs and organic semiconductors.

3.
Opt Express ; 26(4): 4421-4430, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475292

RESUMO

Lithium niobate's use in integrated optics is somewhat hampered by the lack of a capability to create low loss waveguides with strong lateral index confinement. Thin film single crystal lithium niobate is a promising platform for future applications in integrated optics due to the availability of a strong electro-optic effect in this material coupled with the possibility of strong vertical index confinement. However, sidewalls of etched waveguides are typically rough in most etching procedures, exacerbating propagation losses. In this paper, we propose a fabrication method that creates significantly smoother ridge waveguides. This involves argon ion milling and subsequent gas clustered ion beam smoothening. We have fabricated and characterized ultra-low loss waveguides with this technique, with propagation losses as low as 0.3 dB/cm at 1.55 µm.

4.
Rapid Commun Mass Spectrom ; 24(10): 1405-10, 2010 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-20411579

RESUMO

A size-selected argon (Ar) gas-cluster ion beam (GCIB) was applied to the secondary ion mass spectrometry (SIMS) of a 1,4-didodecylbenzene (DDB) thin film. The samples were also analyzed by SIMS using an atomic Ar(+) ion projectile and X-ray photoelectron spectroscopy (XPS). Compared with those in the atomic-Ar(+) SIMS spectrum, the fragment species, including siloxane contaminants present on the sample surface, were enhanced several hundred times in the Ar gas-cluster SIMS spectrum. XPS spectra during beam irradiation indicate that the Ar GCIB sputters contaminants on the surface more effectively than the atomic Ar(+) ion beam. These results indicate that a large gas-cluster projectile can sputter a much shallower volume of organic material than small projectiles, resulting in an extremely surface-sensitive analysis of organic thin films.


Assuntos
Argônio/química , Derivados de Benzeno/química , Espectrometria de Massa de Íon Secundário/métodos , Espectroscopia Fotoeletrônica , Siloxanas/química , Propriedades de Superfície
5.
Nanoscale ; 6(6): 3243-9, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24504045

RESUMO

We report an alternative method of producing sub-30 nm thick silver films and structures with ultralow loss using gas cluster ion beam irradiation (GCIB). We have direct evidence showing that scattering from grain boundaries and voids rather than surface roughness are the main mechanisms for the increase in loss with reducing thickness. Using GCIB irradiation, we demonstrate the ability to reduce these scattering effects simultaneously through nanoscale surface smoothing, increase in grain width and lower percolation threshold. Significant improvement in electrical and optical properties by up to 4 times is obtained, before deviation from bulk silver properties starts to occur at 12 nm. We show that this is an enabling technology that can be applied post fabrication to metallic films or lithographically patterned nanostructures for enhanced plasmonic performance, especially in the ultrathin regime.

6.
Rapid Commun Mass Spectrom ; 23(5): 648-52, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19173223

RESUMO

In the secondary ion mass spectrometry (SIMS) of organic substances, the molecular weight of the intact ions currently detectable is at best only as high as 1000 Da, which for all practical purposes prevents the technique from being applied to biomaterials of higher mass. We have developed SIMS instrumentation in which the primary ions were argon cluster ions having a kinetic energy per atom, controlled down to 1 eV. On applying this instrumentation to several peptides and proteins, the signal intensity of fragment ions was decreased by a factor of 10(2) when the kinetic energy per atom was decreased below 5 eV; moreover, intact ions of insulin (molecular weight (MW): 5808) and cytochrome C (MW: 12 327) were detected without using any matrix. These results indicate that fragmentation can be substantially suppressed without sacrificing the sputter yield of intact ions when the kinetic energy per atom is decreased to the level of the target's dissociation energy. This principle is fully applicable to other biomolecules, and it can thus be expected to contribute to applications of SIMS to biomaterials in the future.


Assuntos
Algoritmos , Argônio/química , Citocromos c/química , Insulina/química , Microquímica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Citocromos c/análise , Insulina/análise , Íons , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA