Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Crit Rev Eukaryot Gene Expr ; 34(2): 61-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38073442

RESUMO

Long non-coding RNA (lncRNA)-mediated control of gene expression contributes to regulation of biological processes that include proliferation and phenotype, as well as compromised expression of genes that are functionally linked to cancer initiation and tumor progression. lncRNAs have emerged as novel targets and biomarkers in breast cancer. We have shown that mitotically associated lncRNA MANCR is expressed in triple-negative breast cancer (TNBC) cells and that it serves a critical role in promoting genome stability and survival in aggressive breast cancer cells. Using an siRNA strategy, we selectively depleted BRD2, BRD3, and BRD4, singly and in combination, to establish which bromodomain proteins regulate MANCR expression in TNBC cells. Our findings were confirmed by using in situ hybridization combined with immunofluorescence analysis that revealed BRD4, either alone or with BRD2 and BRD3, can support MANCR regulation of TNBC cells. Here we provide evidence for MANCR-responsive epigenetic control of super enhancers by histone modifications that are required for gene transcription to support cell survival and expression of the epithelial tumor phenotype in triple negative breast cancer cells.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
2.
J Cell Physiol ; 234(6): 8597-8609, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515788

RESUMO

The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Neoplasias/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Transdução de Sinais
3.
J Cell Physiol ; 233(2): 1291-1299, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28488769

RESUMO

Long non-coding RNAs (lncRNAs) are acknowledged as regulators of cancer biology and pathology. Our goal was to perform a stringent profiling of breast cancer cell lines that represent disease progression. We used the MCF-10 series, which includes the normal-like MCF-10A, HRAS-transformed MCF-10AT1 (pre-malignant), and MCF-10CA1a (malignant) cells, to perform transcriptome wide sequencing. From these data, we have identified 346 lncRNAs with dysregulated expression across the progression series. By comparing lncRNAs from these datasets to those from an additional set of cell lines that represent different disease stages and subtypes, MCF-7 (early stage, luminal), and MDA-MB-231 (late stage, basal), 61 lncRNAs that are associated with breast cancer progression were identified. Querying breast cancer patient data from The Cancer Genome Atlas, we selected a lncRNA, IGF-like family member 2 antisense RNA 1 (IGFL2-AS1), of potential clinical relevance for functional characterization. Among the 61 lncRNAs, IGFL2-AS1 was the most significantly decreased. Our results indicate that this lncRNA plays a role in downregulating its nearest neighbor, IGFL1, and affects migration of breast cancer cells. Furthermore, the lncRNAs we identified provide a valuable resource to mechanistically and clinically understand the contribution of lncRNAs in breast cancer progression.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Biologia Computacional , Bases de Dados Genéticas , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Invasividade Neoplásica , Fenótipo , Interferência de RNA , RNA Longo não Codificante/metabolismo , Transcriptoma , Transfecção
4.
EMBO Rep ; 17(1): 110-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26598552

RESUMO

Autophagy traffics cellular components to the lysosome for degradation. Ral GTPase and the exocyst have been implicated in the regulation of stress-induced autophagy, but it is unclear whether they are global regulators of this process. Here, we investigate Ral function in different cellular contexts in Drosophila and find that it is required for autophagy during developmentally regulated cell death in salivary glands, but does not affect starvation-induced autophagy in the fat body. Furthermore, knockdown of exocyst subunits has a similar effect, preventing autophagy in dying cells but not in cells of starved animals. Notch activity is elevated in dying salivary glands, this change in Notch signaling is influenced by Ral, and decreased Notch function influences autophagy. These data indicate that Ral and the exocyst regulate autophagy in a context-dependent manner, and that in dying salivary glands, Ral mediates autophagy, at least in part, by regulation of Notch.


Assuntos
Autofagia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Morte Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Corpo Adiposo , Regulação da Expressão Gênica , Receptores Notch/genética , Receptores Notch/metabolismo , Glândulas Salivares/citologia , Glândulas Salivares/fisiologia , Inanição , Estresse Fisiológico
5.
Proc Natl Acad Sci U S A ; 108(19): 7826-31, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518918

RESUMO

Autophagy is a conserved cellular process to degrade and recycle cytoplasmic components. During autophagy, lysosomes fuse with an autophagosome to form an autolysosome. Sequestered components are degraded by lysosomal hydrolases and presumably released into the cytosol by lysosomal efflux permeases. Following starvation-induced autophagy, lysosome homeostasis is restored by autophagic lysosome reformation (ALR) requiring activation of the "target of rapamycin" (TOR) kinase. Spinster (Spin) encodes a putative lysosomal efflux permease with the hallmarks of a sugar transporter. Drosophila spin mutants accumulate lysosomal carbohydrates and enlarged lysosomes. Here we show that defects in spin lead to the accumulation of enlarged autolysosomes. We find that spin is essential for mTOR reactivation and lysosome reformation following prolonged starvation. Further, we demonstrate that the sugar transporter activity of Spin is essential for ALR.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Metabolismo dos Carboidratos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Genes de Insetos , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Mutação , Interferência de RNA , Ratos , Homologia de Sequência de Aminoácidos
6.
Sci Rep ; 12(1): 7770, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546168

RESUMO

Bone formation requires osteogenic differentiation of multipotent mesenchymal stromal cells (MSCs) and lineage progression of committed osteoblast precursors. Osteogenic phenotype commitment is epigenetically controlled by genomic (chromatin) and non-genomic (non-coding RNA) mechanisms. Control of osteogenesis by long non-coding RNAs remains a largely unexplored molecular frontier. Here, we performed comprehensive transcriptome analysis at early stages of osteogenic cell fate determination in human MSCs, focusing on expression of lncRNAs. We identified a chromatin-bound lncRNA (MIR181A1HG) that is highly expressed in self-renewing MSCs. MIR181A1HG is down-regulated when MSCs become osteogenic lineage committed and is retained during adipogenic differentiation, suggesting lineage-related molecular functions. Consistent with a key role in human MSC proliferation and survival, we demonstrate that knockdown of MIR181A1HG in the absence of osteogenic stimuli impedes cell cycle progression. Loss of MIR181A1HG enhances differentiation into osteo-chondroprogenitors that produce multiple extracellular matrix proteins. RNA-seq analysis shows that loss of chromatin-bound MIR181A1HG alters expression and BMP2 responsiveness of skeletal gene networks (e.g., SOX5 and DLX5). We propose that MIR181A1HG is a novel epigenetic regulator of early stages of mesenchymal lineage commitment towards osteo-chondroprogenitors. This discovery permits consideration of MIR181A1HG and its associated regulatory pathways as targets for promoting new bone formation in skeletal disorders.


Assuntos
Osteogênese , RNA Longo não Codificante , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Osteoblastos/metabolismo , Osteogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Results Probl Cell Differ ; 70: 375-396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348115

RESUMO

The cell cycle is governed by stringent epigenetic mechanisms that, in response to intrinsic and extrinsic regulatory cues, support fidelity of DNA replication and cell division. We will focus on (1) the complex and interdependent processes that are obligatory for control of proliferation and compromised in cancer, (2) epigenetic and topological domains that are associated with distinct phases of the cell cycle that may be altered in cancer initiation and progression, and (3) the requirement for mitotic bookmarking to maintain intranuclear localization of transcriptional regulatory machinery to reinforce cell identity throughout the cell cycle to prevent malignant transformation.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Ciclo Celular/genética , Divisão Celular , Neoplasias/genética , Neoplasias/patologia , Cromatina , Regulação da Expressão Gênica
8.
Results Probl Cell Differ ; 70: 339-373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348114

RESUMO

Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Fenótipo , Neoplasias/genética , Neoplasias/patologia , Regulação da Expressão Gênica , Cromatina
9.
Mol Cell Biol ; 27(21): 7538-50, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17709381

RESUMO

A hallmark of metastasis is organ specificity; however, little is known about the underlying signaling pathways responsible for the colonization and growth of tumor cells in target organs. Since tyrosine kinase receptor activation is frequently associated with prostate cancer progression, we have investigated the role of a common signaling intermediary, activated Ras, in prostate cancer metastasis. Three effector pathways downstream of Ras, Raf/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase, and Ral guanine nucleotide exchange factors (RalGEFs), were assayed for their ability to promote the metastasis of a tumorigenic, nonmetastatic human prostate cancer cell line, DU145. Oncogenic Ras promoted the metastasis of DU145 to multiple organs, including bone and brain. Activation of the Raf/ERK pathway stimulated metastatic colonization of the brain, while activation of the RalGEF pathway led to bone metastases, the most common organ site for prostate cancer metastasis. In addition, loss of RalA in the metastatic PC3 cell line inhibited bone metastasis but did not affect subcutaneous tumor growth. Loss of Ral appeared to suppress expansive growth of prostate cancer cells in bone, whereas homing and initial colonization were less affected. These data extend our understanding of the functional roles of the Ral pathway and begin to identify signaling pathways relevant for organ-specific metastasis.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Transdução de Sinais , Proteínas ral de Ligação ao GTP/metabolismo , Fator ral de Troca do Nucleotídeo Guanina/metabolismo , Animais , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Genes ras , Humanos , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Especificidade de Órgãos , Proteínas ras/metabolismo
10.
Mol Cancer Res ; 16(4): 587-598, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378907

RESUMO

Aggressive breast cancer is difficult to treat as it is unresponsive to many hormone-based therapies; therefore, it is imperative to identify novel, targetable regulators of progression. Long non-coding RNAs (lncRNA) are important regulators in breast cancer and have great potential as therapeutic targets; however, little is known about how the majority of lncRNAs function within breast cancer. This study characterizes a novel lncRNA, MANCR (mitotically-associated long noncoding RNA; LINC00704), which is upregulated in breast cancer patient specimens and cells. Depletion of MANCR in triple-negative breast cancer cells significantly decreases cell proliferation and viability, with concomitant increases in DNA damage. Transcriptome analysis, based on RNA sequencing, following MANCR knockdown reveals significant differences in the expression of >2,000 transcripts, and gene set enrichment analysis identifies changes in multiple categories related to cell-cycle regulation. Furthermore, MANCR expression is highest in mitotic cells by both RT-qPCR and RNA in situ hybridization. Consistent with a role in cell-cycle regulation, MANCR-depleted cells have a lower mitotic index and higher incidences of defective cytokinesis and cell death. Taken together, these data reveal a role for the novel lncRNA, MANCR, in genomic stability of aggressive breast cancer, and identify it as a potential therapeutic target.Implications: The novel lncRNA, MANCR (LINC00704), is upregulated in breast cancer and is functionally linked with cell proliferation, viability, and genomic stability. Mol Cancer Res; 16(4); 587-98. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Mitose , RNA Longo não Codificante/genética , Regulação para Cima , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Análise de Sequência de RNA
11.
Adv Biol Regul ; 69: 1-10, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29759441

RESUMO

Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.


Assuntos
Epigênese Genética/genética , Animais , Neoplasias da Mama/genética , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Humanos , Mitose/genética , Mitose/fisiologia
12.
Curr Top Dev Biol ; 103: 101-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23347517

RESUMO

Macroautophagy (autophagy) is a conserved catabolic process that targets cytoplasmic components to lysosomes for degradation. Autophagy is required for cellular homeostasis and cell survival in response to starvation and stress, and paradoxically, it also plays a role in programmed cell death during development. The mechanisms that regulate the relationship between autophagy, cell survival, and cell death are poorly understood. Here we review research in Drosophila that has provided insights into the regulation of autophagy by steroid hormones and nutrient restriction and discuss how autophagy influences cell growth, nutrient utilization, cell survival, and cell death.


Assuntos
Autofagia , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Metamorfose Biológica , Animais , Alimentos , Modelos Biológicos , Transdução de Sinais
13.
Clin Exp Metastasis ; 26(5): 403-14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19277878

RESUMO

Brain metastasis has become an increasing cause of morbidity and mortality in cancer patients as the treatment of systemic disease has improved. Brain metastases frequently are highly vascularized, a process driven primarily by VEGF. VEGF mediates numerous changes within the vasculature including endothelial cell retraction and increased permeability, vasodilation, and new vessel formation. Here we describe a xenograft brain metastasis model that mimics the critical steps of metastasis including tumor cell dissemination and vascular adhesion, tumor growth and tumor associated angiogenesis. Magnetic resonance (MR) imaging was used to evaluate two aspects of the functional response of brain metastasis to the anti-VEGF receptor therapeutic, AZD2171 (Cediranib, RECENTIN). MR tracking of individual cells demonstrated that cediranib did not impede tumor cell extravasation into the brain parenchyma despite evidence that anti-VEGF treatment decreases the permeability of the blood brain barrier. In a second assay, blood volume imaging using ultrasmall superparamagnetic iron oxide revealed that treatment of well-developed brain metastasis with cediranib for 7 days led to a heterogeneous response with respect to individual tumors. Overall, there was a significant average decrease in the tumor vascular bed volume. The majority of large tumors demonstrated substantially reduced central blood volumes relative to normal brain while retaining a rim of elevated blood volume at the tumor brain interface. Small tumors or occasional large tumors displayed a static response. Models and assays such as those described here will be important for designing mechanism-based approaches to the use of anti-angiogenesis therapies for the treatment of brain metastasis.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias Encefálicas/secundário , Adesão Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Compostos Férricos/farmacologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias da Próstata/terapia , Quinazolinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA