Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 66(13): 8498-8509, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37357499

RESUMO

Different stapling techniques have been used recently to address the subpar performance of antimicrobial peptides (AMPs) in clinical trials with ample focus on α-helical AMPs. In comparison, a systematic evaluation of such strategies on ß-hairpin AMPs is lacking. Herein, we report the design, synthesis, and evaluation of a library of all-hydrocarbon-stapled ß-hairpin AMPs with variation in key parameters intended as potent therapeutics against drug-resistant pathogens. We observed an interesting interplay between the activity, stability, and structural strength. Single-stapled peptides with a 6-carbon staple at peptide termini such as 5(c6) displayed the most potent activity against colistin-resistant clinical isolates. Using imaging techniques, we observed translocation of 5(c6) across bacterial membranes without causing extensive damage. Overall, we have engineered novel all-hydrocarbon-stapled ß-hairpin AMPs with structural and functional proficiency that can effectively combat resistant pathogens, with findings from this study a point of reference for future interests in developing novel ß-hairpin AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/química , Bactérias Gram-Negativas , Bactérias , Testes de Sensibilidade Microbiana , Hidrocarbonetos/química , Antibacterianos/química
2.
Acta Biomater ; 135: 214-224, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506975

RESUMO

Synthetic ß-hairpin antimicrobial peptides (AMPs) offer a useful source for the development of novel antimicrobial agents. ß-hairpin peptides generally consist of two side strands bridged by a reverse turn. In literature, most studies focused on the modifications of the side strands to manipulate the stability and activity of ß-hairpin peptides, and much less is known about the impact of the turn region. By designing a series of de novo ß-hairpin peptides with identical side strands but varied turns, we demonstrated that mutations of only 2 to 4 amino acids at the turn region could impart a wide range of antimicrobial profiles among synthetic ß-hairpin AMPs. BTT2-4 and BTT6 displayed selective potency against Gram-negative bacteria, with minimum inhibitory concentrations (MICs) of 4-8 µM. In contrast, BTT1 exhibited broad-spectrum activity, with MICs of 4-8 µM against both Gram-positive and Gram-negative strains. Additionally, BTT1 was potent against methicillin-resistant Staphylococcus aureus (MRSA) and colistin-resistant Enterobacterales. The antimicrobial potency of BTT1 persisted after 14 days of serial passage. Mechanistic studies revealed that interactions between lipopolysaccharide (LPS) and the peptides were critical to their membranolytic activity against the bacterial inner membrane. Aside from folding stability, we observed that a degree of conformational flexibility was required for disruptive membrane interactions. STATEMENT OF SIGNIFICANCE: By examining the significance of the turn region of ß-hairpin peptides, we present valuable knowledge to the design toolkit of novel antimicrobial peptides as alternative therapeutics to overcome antibiotic resistance. Our de novo designed synthetic peptides displayed selective activity against Gram-negative bacteria and potent activity against clinically relevant antibiotic-resistant strains (e.g. colistin-resistant Enterobacterales and methicillin-resistant Staphylococcus aureus). The bactericidal activity of our peptides was shown to be robust in the presence of proteolytic trypsin and saline, conditions that could suppress peptide activity. Our peptides were also determined to be non-cytotoxic against a human cell line.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Preparações Farmacêuticas , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Bactérias Gram-Negativas , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA