Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338462

RESUMO

Tuberculosis is one of the most common infectious diseases in the world, caused by Mycobacterium tuberculosis. The outbreak of multiple drug-resistant tuberculosis has become a major challenge to prevent this disease worldwide. ClpC1 is a Clp ATPase protein of Mycobacterium tuberculosis, functioning as a chaperon when combined with the Clp complex. ClpC1 has emerged as a new target to discover anti-tuberculosis drugs. This study aimed to explore the ClpC1 inhibitors from actinomycetes, which have been known to provide abundant sources of antibiotics. Two cyclic peptides, including nocardamin (1), halolitoralin A (3), and a lactone pleurone (2), were isolated from the culture of Streptomyces aureus (VTCC43181). The structures of these compounds were determined based on the detailed analysis of their spectral data and comparison with references. This is the first time these compounds have been isolated from S. aureus. Compounds 1-3 were evaluated for their affection of ATPase activity of the recombinant ClpC1 protein. Of these compounds, halolitoralin A (1), a macrocyclic peptide, was effective for the ATPase hydrolysis of the ClpC1 protein.


Assuntos
Mycobacterium tuberculosis , Streptomyces , Staphylococcus aureus/metabolismo , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Adenosina Trifosfatases/metabolismo
2.
Biol Chem ; 402(10): 1213-1224, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34342947

RESUMO

Osteoporosis, one of the most serious public health concerns caused by an imbalance between bone resorption and bone formation, has a major impact on the population. Therefore, finding the effective osteogenic compounds for the treatment of osteoporosis is a promising research approach. In our study, tamarind (Tamarindus indica L.) seed polysaccharide (TSP) extracted from tamarind seed was subjected to synthesize its sulfate derivatives. The 1H NMR, FT-IR, SEM, monosaccharide compositions and elemental analysis data revealed that tamarind seed polysaccharide sulfate (TSPS) was successfully prepared. As the result, TSPS showed potent effects on inducing osteoblast differentiation via increasing alkaline phosphatase (ALP) activity up to 20% after 10 days and bone mineralization approximately 58% after four weeks at concentration of 20 µg/mL, whereas no statistically increase for both ALP activity and bone mineralization was observed in TSP treatment. Furthermore, TSPS enhanced expression of several marker genes in bone formation. Overall, the obtained data provided novelty on osteogenic compounds originated from TSP of T. indica, as well as scientific fundamentals on drug development and bone tissue engineering for the treatment of osteoporosis and other bone-related diseases.


Assuntos
Osteogênese , Tamarindus , Polissacarídeos , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA