RESUMO
Vietnam has a high thalassemia burden. We collected blood samples from 5880 pregnant Vietnamese women during prenatal health checks to assess thalassemia carrier frequency using combined gap-polymerase chain reaction (gap-PCR) and targeted next-generation sequencing (NGS). Thalassemia carriers were identified with prevalence of 13.13% (772), including 7.82% (460) carriers of α-thalassemia (α-thal), 5.31% (312) carriers of ß-thalassemia (ß-thal), and 0.63% (37) concurrent α-/ß-thal carriers. Deletional mutations (368) accounted for 80.0% of α-thal carriers, of which, --SEA (Southeast Asian) (n = 254; 55.0%) was most prevalent, followed by the -α3.7 (rightward) (n = 66; 14.0%) and -α4.2 (leftward) (n = 45; 9.8%) deletions. Hb Westmead (HBA2: c.369C>G) (n = 53) and Hb Constant Spring (Hb CS or HBA2: c.427T>C) (in 28) are the two most common nondeletional α-globin variants, accounting for 11.5 and 6.0% of α-thal carriers. We detected 11 different ß-thal genotypes. Hb E (HBB: c.79G>A) (in 211) accounted for 67.6% of ß-thal carriers. The most common ß-thal genotypes were associated with mutations at codon 17 (A>T) (HBB: c.52A>T), codons 41/42 (-TTCT) (HBB: c.126_129delCTTT), and codon 71/72 (+A) (HBB: c.217_218insA) (prevalence 0.70%, 0.68%, and 0.2%, respectively). Based on mutation frequencies calculated in this study, estimates of 5021 babies in Vietnam are affected with clinically severe thalassemia annually. Our data suggest a higher thalassemia carrier frequency in Vietnam than previously reported. We established that combining NGS with gap-PCR creates an effective large-scale thalassemia screening method that can detect a broad range of mutations.
Assuntos
Talassemia alfa , Talassemia beta , Feminino , Humanos , Gravidez , Talassemia beta/diagnóstico , Talassemia beta/epidemiologia , Talassemia beta/genética , Globinas beta/genética , Gestantes , Vietnã/epidemiologia , Frequência do Gene , Talassemia alfa/diagnóstico , Talassemia alfa/epidemiologia , Talassemia alfa/genética , Reação em Cadeia da Polimerase , Mutação , Códon , Genótipo , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
α-Thalassemia is a common inherited blood disorder manifested mainly by the deletions of α-globin genes. In geographical areas with high carrier frequencies, screening of α-thalassemia carrier state is therefore of vital importance. This study presents a novel method for identifying female carriers of common α-thalassemia deletions using samples routinely taken for non-invasive prenatal tests for screening of fetal chromosomal aneuploidies. A total of 68,885 Vietnamese pregnant women were recruited and α-thalassemia statuses were determined by gap-PCR, revealing 5344 women (7.76%) carried deletions including αα/--SEA (4.066%), αα/-α3.7 (2.934%), αα/-α4.2 (0.656%), and rare genotypes (0.102%). A two-stage model was built to predict these α-thalassemia deletions from targeted sequencing of the HBA gene cluster on maternal cfDNA. Our method achieved F1-scores of 97.14-99.55% for detecting the three common genotypes and 94.74% for detecting rare genotypes (-α3.7/-α4.2, αα/--THAI, -α3.7/--SEA, -α4.2/--SEA). Additionally, the positive predictive values were 100.00% for αα/αα, 99.29% for αα/--SEA, 94.87% for αα/-α3.7, and 96.51% for αα/-α4.2; and the negative predictive values were 97.63%, 99.99%, 99.99%, and 100.00%, respectively. As NIPT is increasingly adopted for pregnant women, utilizing cfDNA from NIPT to detect maternal carriers of common α-thalassemia deletions will be cost-effective and expand the benefits of NIPT.
Assuntos
Ácidos Nucleicos Livres , Talassemia alfa , Talassemia beta , China , Feminino , Genótipo , Humanos , Mutação , Reação em Cadeia da Polimerase/métodos , Gravidez , alfa-Globinas/genética , Talassemia alfa/diagnóstico , Talassemia alfa/genética , Talassemia beta/genéticaRESUMO
BACKGROUND: Several inherited metabolic diseases are underreported in Vietnam, namely glucose-6-phosphate dehydrogenase deficiency (G6PDd), phenylketonuria (PKU) and galactosemia (GAL). Whilst massively parallel sequencing (MPS) allows researchers to screen several loci simultaneously for pathogenic variants, no screening programme uses MPS to uncover the variant spectra of these diseases in the Vietnamese population. METHODS: Pregnant women (mean age of 32) from across Vietnam attending routine prenatal health checks agreed to participate and had their blood drawn. MPS was used to detect variants in their G6PD, PAH and GALT genes. RESULTS: Of 3259 women screened across Vietnam, 450 (13.8%) carried disease-associated variants for G6PD, PAH and GALT. The prevalence of carriers was 8.9% (291 of 3259) in G6PD and 4.6% (152 of 3259) in PKU, whilst GAL was low at 0.2% (7 of 3259). Two GALT variants, c.593 T > C and c.1034C > A, have rarely been reported. CONCLUSION: This study highlights the need for routine carrier screening, where women give blood whilst receiving routine prenatal care, in Vietnam. The use of MPS is suitable for screening multiple variants, allowing for identifying rare pathogenic variants. The data from our study will inform policymakers in constructing cost-effective genetic metabolic carrier screening programmes.