Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurosci ; 42(24): 4828-4840, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35534225

RESUMO

The functions of cortical networks are progressively established during development by series of events shaping the neuronal connectivity. Synaptic elimination, which consists of removing the supernumerary connections generated during the earlier stages of cortical development, is one of the latest stages in neuronal network maturation. The semaphorin 3F coreceptors neuropilin 2 (Nrp2) and plexin-A3 (PlxnA3) may play an important role in the functional maturation of the cerebral cortex by regulating the excess dendritic spines on cortical excitatory neurons. Yet, the identity of the connections eliminated under the control of Nrp2/PlxnA3 signaling is debated, and the importance of this synaptic refinement for cortical functions remains poorly understood. Here, we show that Nrp2/PlxnA3 controls the spine densities in layer 4 (L4) and on the apical dendrite of L5 neurons of the sensory and motor cortices. Using a combination of neuroanatomical, ex vivo electrophysiology, and in vivo functional imaging techniques in Nrp2 and PlxnA3 KO mice of both sexes, we disprove the hypothesis that Nrp2/PlxnA3 signaling is required to maintain the ectopic thalamocortical connections observed during embryonic development. We also show that the absence of Nrp2/PlxnA3 signaling leads to the hyperexcitability and excessive synchronization of the neuronal activity in L5 and L4 neuronal networks, suggesting that this system could participate in the refinement of the recurrent corticocortical connectivity in those layers. Altogether, our results argue for a role of semaphorin-Nrp2/PlxnA3 signaling in the proper maturation and functional connectivity of the cerebral cortex, likely by controlling the refinement of recurrent corticocortical connections.SIGNIFICANCE STATEMENT The function of a neuronal circuit is mainly determined by the connections that neurons establish with one another during development. Understanding the mechanisms underlying the establishment of the functional connectivity is fundamental to comprehend how network functions are implemented, and to design treatments aiming at restoring damaged neuronal circuits. Here, we show that the cell surface receptors for the family of semaphorin guidance cues neuropilin 2 (Nrp2) and plexin-A3 (PlxnA3) play an important role in shaping the functional connectivity of the cerebral cortex likely by trimming the recurrent connections in layers 4 and 5. By removing the supernumerary inputs generated during early development, Nrp2/PlxnA3 signaling reduces the neuronal excitability and participates in the maturation of the cortical network functions.


Assuntos
Neuropilina-2 , Semaforinas , Animais , Moléculas de Adesão Celular , Córtex Cerebral/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso , Neuropilina-2/metabolismo , Semaforinas/metabolismo
2.
Genes Dev ; 29(24): 2617-32, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26680304

RESUMO

Commissural axon guidance depends on a myriad of cues expressed by intermediate targets. Secreted semaphorins signal through neuropilin-2/plexin-A1 receptor complexes on post-crossing commissural axons to mediate floor plate repulsion in the mouse spinal cord. Here, we show that neuropilin-2/plexin-A1 are also coexpressed on commissural axons prior to midline crossing and can mediate precrossing semaphorin-induced repulsion in vitro. How premature semaphorin-induced repulsion of precrossing axons is suppressed in vivo is not known. We discovered that a novel source of floor plate-derived, but not axon-derived, neuropilin-2 is required for precrossing axon pathfinding. Floor plate-specific deletion of neuropilin-2 significantly reduces the presence of precrossing axons in the ventral spinal cord, which can be rescued by inhibiting plexin-A1 signaling in vivo. Our results show that floor plate-derived neuropilin-2 is developmentally regulated, functioning as a molecular sink to sequester semaphorins, preventing premature repulsion of precrossing axons prior to subsequent down-regulation, and allowing for semaphorin-mediated repulsion of post-crossing axons.


Assuntos
Axônios/fisiologia , Interneurônios Comissurais/fisiologia , Neuropilina-2/metabolismo , Semaforinas/metabolismo , Animais , Células Cultivadas , Interneurônios Comissurais/citologia , Embrião de Mamíferos , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-2/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
3.
J Neurosci ; 40(28): 5413-5430, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499377

RESUMO

Diverse neuronal populations with distinct cellular morphologies coordinate the complex function of the nervous system. Establishment of distinct neuronal morphologies critically depends on signaling pathways that control axonal and dendritic development. The Sema3A-Nrp1/PlxnA4 signaling pathway promotes cortical neuron basal dendrite arborization but also repels axons. However, the downstream signaling components underlying these disparate functions of Sema3A signaling are unclear. Using the novel PlxnA4KRK-AAA knock-in male and female mice, generated by CRISPR/cas9, we show here that the KRK motif in the PlxnA4 cytoplasmic domain is required for Sema3A-mediated cortical neuron dendritic elaboration but is dispensable for inhibitory axon guidance. The RhoGEF FARP2, which binds to the KRK motif, shows identical functional specificity as the KRK motif in the PlxnA4 receptor. We find that Sema3A activates the small GTPase Rac1, and that Rac1 activity is required for dendrite elaboration but not axon growth cone collapse. This work identifies a novel Sema3A-Nrp1/PlxnA4/FARP2/Rac1 signaling pathway that specifically controls dendritic morphogenesis but is dispensable for repulsive guidance events. Overall, our results demonstrate that the divergent signaling output from multifunctional receptor complexes critically depends on distinct signaling motifs, highlighting the modular nature of guidance cue receptors and its potential to regulate diverse cellular responses.SIGNIFICANCE STATEMENT The proper formation of axonal and dendritic morphologies is crucial for the precise wiring of the nervous system that ultimately leads to the generation of complex functions in an organism. The Semaphorin3A-Neuropilin1/Plexin-A4 signaling pathway has been shown to have multiple key roles in neurodevelopment, from axon repulsion to dendrite elaboration. This study demonstrates that three specific amino acids, the KRK motif within the Plexin-A4 receptor cytoplasmic domain, are required to coordinate the downstream signaling molecules to promote Sema3A-mediated cortical neuron dendritic elaboration, but not inhibitory axon guidance. Our results unravel a novel Semaphorin3A-Plexin-A4 downstream signaling pathway and shed light on how the disparate functions of axon guidance and dendritic morphogenesis are accomplished by the same extracellular ligand in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dendritos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Neuropeptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Semaforina-3A/metabolismo
4.
J Neurosci ; 39(45): 8845-8859, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31541021

RESUMO

The striatum represents the main input structure of the basal ganglia, receiving massive excitatory input from the cortex and the thalamus. The development and maintenance of cortical input to the striatum is crucial for all striatal function including many forms of sensorimotor integration, learning, and action control. The molecular mechanisms regulating the development and maintenance of corticostriatal synaptic transmission are unclear. Here we show that the guidance cue, Semaphorin 3F and its receptor Neuropilin 2 (Nrp2), influence dendritic spine maintenance, corticostriatal short-term plasticity, and learning in adult male and female mice. We found that Nrp2 is enriched in adult layer V pyramidal neurons, corticostriatal terminals, and in developing and adult striatal spiny projection neurons (SPNs). Loss of Nrp2 increases SPN excitability and spine number, reduces short-term facilitation at corticostriatal synapses, and impairs goal-directed learning in an instrumental task. Acute deletion of Nrp2 selectively in adult layer V cortical neurons produces a similar increase in the number of dendritic spines and presynaptic modifications at the corticostriatal synapse in the Nrp2-/- mouse, but does not affect the intrinsic excitability of SPNs. Furthermore, conditional loss of Nrp2 impairs sensorimotor learning on the accelerating rotarod without affecting goal-directed instrumental learning. Collectively, our results identify Nrp2 signaling as essential for the development and maintenance of the corticostriatal pathway and may shed novel insights on neurodevelopmental disorders linked to the corticostriatal pathway and Semaphorin signaling.SIGNIFICANCE STATEMENT The corticostriatal pathway controls sensorimotor, learning, and action control behaviors and its dysregulation is linked to neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here we demonstrate that Neuropilin 2 (Nrp2), a receptor for the axon guidance cue semaphorin 3F, has important and previously unappreciated functions in the development and adult maintenance of dendritic spines on striatal spiny projection neurons (SPNs), corticostriatal short-term plasticity, intrinsic physiological properties of SPNs, and learning in mice. Our findings, coupled with the association of Nrp2 with ASD in human populations, suggest that Nrp2 may play an important role in ASD pathophysiology. Overall, our work demonstrates Nrp2 to be a key regulator of corticostriatal development, maintenance, and function, and may lead to better understanding of neurodevelopmental disease mechanisms.


Assuntos
Córtex Cerebral/metabolismo , Condicionamento Operante , Corpo Estriado/metabolismo , Neuropilina-2/metabolismo , Transmissão Sináptica , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/fisiologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neuropilina-2/genética , Células Piramidais/citologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia
5.
J Neurosci ; 34(34): 11274-87, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143608

RESUMO

Neuron-glial related cell adhesion molecule (NrCAM) is a regulator of axon growth and repellent guidance, and has been implicated in autism spectrum disorders. Here a novel postsynaptic role for NrCAM in Semaphorin3F (Sema3F)-induced dendritic spine remodeling was identified in pyramidal neurons of the primary visual cortex (V1). NrCAM localized to dendritic spines of star pyramidal cells in postnatal V1, where it was coexpressed with Sema3F. NrCAM deletion in mice resulted in elevated spine densities on apical dendrites of star pyramidal cells at both postnatal and adult stages, and electron microscopy revealed increased numbers of asymmetric synapses in layer 4 of V1. Whole-cell recordings in cortical slices from NrCAM-null mice revealed increased frequency of mEPSCs in star pyramidal neurons. Recombinant Sema3F-Fc protein induced spine retraction on apical dendrites of wild-type, but not NrCAM-null cortical neurons in culture, while re-expression of NrCAM rescued the spine retraction response. NrCAM formed a complex in brain with Sema3F receptor subunits Neuropilin-2 (Npn-2) and PlexinA3 (PlexA3) through an Npn-2-binding sequence (TARNER) in the extracellular Ig1 domain. A trans heterozygous genetic interaction test demonstrated that Sema3F and NrCAM pathways interacted in vivo to regulate spine density in star pyramidal neurons. These findings reveal NrCAM as a novel postnatal regulator of dendritic spine density in cortical pyramidal neurons, and an integral component of the Sema3F receptor complex. The results implicate NrCAM as a contributor to excitatory/inhibitory balance in neocortical circuits.


Assuntos
Encéfalo/citologia , Moléculas de Adesão Celular/fisiologia , Espinhas Dendríticas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Moléculas de Adesão Celular/deficiência , Células Cultivadas , Chlorocebus aethiops , Espinhas Dendríticas/ultraestrutura , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Bloqueadores dos Canais de Sódio/farmacologia , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
6.
J Biol Chem ; 289(46): 32030-32043, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25271168

RESUMO

Rab11a has been conceived as a prominent regulatory component of the recycling endosome, which acts as a nexus in the endo- and exocytotic networks. The precise in vivo role of Rab11a in mouse embryonic development is unknown. We globally ablated Rab11a and examined the phenotypic and molecular outcomes in Rab11a(null) blastocysts and mouse embryonic fibroblasts. Using multiple trafficking assays and complementation analyses, we determined, among multiple important membrane-associated and soluble cargos, the critical contribution of Rab11a vesicular traffic to the secretion of multiple soluble MMPs. Rab11a(null) embryos were able to properly form normal blastocysts but died at peri-implantation stages. Our data suggest that Rab11a critically controls mouse blastocyst development and soluble matrix metalloproteinase secretion.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Metaloproteinases da Matriz/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Fosfatase Alcalina/metabolismo , Alelos , Animais , Blastocisto/citologia , Desenvolvimento Embrionário , Feminino , Fibroblastos/citologia , Genoma , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Prenhez , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/genética
7.
Nature ; 462(7276): 1065-9, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20010807

RESUMO

The majority of excitatory synapses in the mammalian CNS (central nervous system) are formed on dendritic spines, and spine morphology and distribution are critical for synaptic transmission, synaptic integration and plasticity. Here, we show that a secreted semaphorin, Sema3F, is a negative regulator of spine development and synaptic structure. Mice with null mutations in genes encoding Sema3F, and its holoreceptor components neuropilin-2 (Npn-2, also known as Nrp2) and plexin A3 (PlexA3, also known as Plxna3), exhibit increased dentate gyrus (DG) granule cell (GC) and cortical layer V pyramidal neuron spine number and size, and also aberrant spine distribution. Moreover, Sema3F promotes loss of spines and excitatory synapses in dissociated neurons in vitro, and in Npn-2(-/-) brain slices cortical layer V and DG GCs exhibit increased mEPSC (miniature excitatory postsynaptic current) frequency. In contrast, a distinct Sema3A-Npn-1/PlexA4 signalling cascade controls basal dendritic arborization in layer V cortical neurons, but does not influence spine morphogenesis or distribution. These disparate effects of secreted semaphorins are reflected in the restricted dendritic localization of Npn-2 to apical dendrites and of Npn-1 (also known as Nrp1) to all dendrites of cortical pyramidal neurons. Therefore, Sema3F signalling controls spine distribution along select dendritic processes, and distinct secreted semaphorin signalling events orchestrate CNS connectivity through the differential control of spine morphogenesis, synapse formation, and the elaboration of dendritic morphology.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Células Piramidais/citologia , Células Piramidais/crescimento & desenvolvimento , Semaforinas/metabolismo , Sinapses/fisiologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/ultraestrutura , Proteínas Recombinantes/farmacologia , Semaforinas/genética , Semaforinas/farmacologia , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura
8.
Sci Signal ; 17(819): eadh7673, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227686

RESUMO

The precise development of neuronal morphologies is crucial to the establishment of synaptic circuits and, ultimately, proper brain function. Signaling by the axon guidance cue semaphorin 3A (Sema3A) and its receptor complex of neuropilin-1 and plexin-A4 has multifunctional outcomes in neuronal morphogenesis. Downstream activation of the RhoGEF FARP2 through interaction with the lysine-arginine-lysine motif of plexin-A4 and consequent activation of the small GTPase Rac1 promotes dendrite arborization, but this pathway is dispensable for axon repulsion. Here, we investigated the interplay of small GTPase signaling mechanisms underlying Sema3A-mediated dendritic elaboration in mouse layer V cortical neurons in vitro and in vivo. Sema3A promoted the binding of the small GTPase Rnd1 to the amino acid motif lysine-valine-serine (LVS) in the cytoplasmic domain of plexin-A4. Rnd1 inhibited the activity of the small GTPase RhoA and the kinase ROCK, thus supporting the activity of the GTPase Rac1, which permitted the growth and branching of dendrites. Overexpression of a dominant-negative RhoA, a constitutively active Rac1, or the pharmacological inhibition of ROCK activity rescued defects in dendritic elaboration in neurons expressing a plexin-A4 mutant lacking the LVS motif. Our findings provide insights into the previously unappreciated balancing act between Rho and Rac signaling downstream of specific motifs in plexin-A4 to mediate Sema3A-dependent dendritic elaboration in mammalian cortical neuron development.


Assuntos
Moléculas de Adesão Celular , Proteínas Monoméricas de Ligação ao GTP , Proteínas do Tecido Nervoso , Semaforinas , Camundongos , Animais , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Lisina/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , Semaforinas/metabolismo , Mamíferos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
9.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370800

RESUMO

Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and epilepsy has not been tested. We tested the hypothesis that the lack of Nrp2 in MGE-derived interneuron precursors disrupts the excitation/inhibition balance in hippocampal circuits, thus predisposing the network to seizures and behavioral patterns associated with ASD. Embryonic deletion of Nrp2 during the developmental period for migration of MGE derived interneuron precursors (iCKO) significantly reduced parvalbumin, neuropeptide Y, and somatostatin positive neurons in the hippocampal CA1. Consequently, when compared to controls, the frequency of inhibitory synaptic currents in CA1 pyramidal cells was reduced while frequency of excitatory synaptic currents was increased in iCKO mice. Although passive and active membrane properties of CA1 pyramidal cells were unchanged, iCKO mice showed enhanced susceptibility to chemically evoked seizures. Moreover, iCKO mice exhibited selective behavioral deficits in both preference for social novelty and goal-directed learning, which are consistent with ASD-like phenotype. Together, our findings show that disruption of developmental Nrp2 regulation of interneuron circuit establishment, produces ASD-like behaviors and enhanced risk for epilepsy. These results support the developmental interneuronopathy hypothesis of ASD epilepsy comorbidity.

10.
J Neurosci ; 31(4): 1545-58, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21273439

RESUMO

NrCAM is a neural cell adhesion molecule of the L1 family that has been linked to autism spectrum disorders, a disease spectrum in which abnormal thalamocortical connectivity may contribute to visual processing defects. Here we show that NrCAM interaction with neuropilin-2 (Npn-2) is critical for semaphorin 3F (Sema3F)-induced guidance of thalamocortical axon subpopulations at the ventral telencephalon (VTe), an intermediate target for thalamic axon sorting. Genetic deletion of NrCAM or Npn-2 caused contingents of embryonic thalamic axons to misproject caudally in the VTe. The resultant thalamocortical map of NrCAM-null mutants showed striking mistargeting of motor and somatosensory thalamic axon contingents to the primary visual cortex, but retinogeniculate targeting and segregation were normal. NrCAM formed a molecular complex with Npn-2 in brain and neural cells, and was required for Sema3F-induced growth cone collapse in thalamic neuron cultures, consistent with a vital function for NrCAM in Sema3F-induced axon repulsion. NrCAM-null mice displayed reduced responses to visual evoked potentials recorded from layer IV in the binocular zone of primary visual cortex (V1), particularly when evoked from the ipsilateral eye, indicating abnormal visual acuity and ocularity. These results demonstrate that NrCAM is required for normal maturation of cortical visual acuity, and suggest that the aberrant projection of thalamic motor and somatosensory axons to the visual cortex in NrCAM-null mutant mice impairs cortical functions.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular/fisiologia , Córtex Motor/ultraestrutura , Córtex Somatossensorial/ultraestrutura , Tálamo/ultraestrutura , Acuidade Visual , Córtex Visual/ultraestrutura , Animais , Moléculas de Adesão Celular/genética , Potenciais Evocados Visuais , Feminino , Cones de Crescimento/fisiologia , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Córtex Motor/embriologia , Córtex Motor/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Neuropilina-2/genética , Neuropilina-2/fisiologia , Córtex Somatossensorial/embriologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tálamo/embriologia , Tálamo/crescimento & desenvolvimento , Córtex Visual/embriologia , Córtex Visual/crescimento & desenvolvimento
11.
Methods Mol Biol ; 2468: 319-328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320573

RESUMO

Laser microsurgery allows the user to ablate cell bodies or disconnect nerve fibers by using a laser microbeam focused through a microscope. This technique was pioneered in C. elegans where it led to exciting discoveries in the fields of development and neurobiology. All neurons studied so far in C. elegans can regenerate and regrow axons and dendrites after injury, allowing studies of the molecular and cellular basis of neuroregeneration. In this chapter, we describe how to assemble and operate a platform for Yb-doped fiber laser microsurgery. The novel laser setup described here is a more robust, lower cost, and user-friendly alternative to other femtosecond-pulsed laser systems.


Assuntos
Caenorhabditis elegans , Microcirurgia , Animais , Lasers , Luz , Microcirurgia/métodos , Neurônios
12.
Front Cell Dev Biol ; 10: 814160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325362

RESUMO

Extracellular signaling proteins serve as neuronal growth cone guidance molecules during development and are well positioned to be involved in neuronal regeneration and recovery from injury. Semaphorins and their receptors, the plexins, are a family of conserved proteins involved in development that, in the nervous system, are axonal guidance cues mediating axon pathfinding and synapse formation. The Caenorhabditis elegans genome encodes for three semaphorins and two plexin receptors: the transmembrane semaphorins, SMP-1 and SMP-2, signal through their receptor, PLX-1, while the secreted semaphorin, MAB-20, signals through PLX-2. Here, we evaluate the locomotion behavior of knockout animals missing each of the semaphorins and plexins and the neuronal morphology of plexin knockout animals; we described the cellular expression pattern of the promoters of all plexins in the nervous system of C. elegans; and we evaluated their effect on the regrowth and reconnection of motoneuron neurites and the recovery of locomotion behavior following precise laser microsurgery. Regrowth and reconnection were more prevalent in the absence of each plexin, while recovery of locomotion surpassed regeneration in all genotypes.

13.
Cell Rep ; 38(11): 110483, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294878

RESUMO

The development of the apical dendrite from the leading process of the bipolar pyramidal neuron might be directed by spatially organized extrinsic cues acting on localized intrinsic determinants. The extracellular cues regulating apical dendrite polarization remain elusive. We show that leading process and apical dendrite development are directed by class III Semaphorins and mediated by a localized cGMP-synthesizing complex. The scaffolding protein Scribble that associates with the cGMP-synthesizing enzyme soluble guanylate cyclase (sGC) also associates with the Semaphorin3A (Sema3A) co-receptor PlexinA3. Deletion or knockdown of PlexinA3 and Sema3A or disruption of PlexinA3-Scribble association prevents Sema3A-mediated cGMP increase and causes defects in apical dendrite development. These manipulations also impair bipolar polarity and leading process establishment. Local cGMP elevation or sGC expression rescues the effects of PlexinA3 knockdown or PlexinA3-Scribble complex disruption. During neuronal polarization, leading process and apical dendrite development are directed by a scaffold that links Semaphorin cue to cGMP increase.


Assuntos
Semaforina-3A , Semaforinas , Células Cultivadas , GMP Cíclico/metabolismo , Dendritos/metabolismo , Neurogênese , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Semaforinas/metabolismo
14.
Transl Psychiatry ; 11(1): 537, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663783

RESUMO

The neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with autism spectrum disorder (ASD). Nrp2-deficient mice show autism-like behavioral deficits and propensity to develop seizures. In order to determine the pathophysiology in Nrp2 deficiency, we examined the hippocampal numbers of interneuron subtypes and inhibitory regulation of hippocampal CA1 pyramidal neurons in mice lacking one or both copies of Nrp2. Immunostaining for interneuron subtypes revealed that Nrp2-/- mice have a reduced number of parvalbumin, somatostatin, and neuropeptide Y cells, mainly in CA1. Whole-cell recordings identified reduced firing and hyperpolarized shift in resting membrane potential in CA1 pyramidal neurons from Nrp2+/- and Nrp2-/- mice compared to age-matched wild-type controls indicating decrease in intrinsic excitability. Simultaneously, the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) are reduced in Nrp2-deficient mice. A convulsive dose of kainic acid evoked electrographic and behavioral seizures with significantly shorter latency, longer duration, and higher severity in Nrp2-/- compared to Nrp2+/+ animals. Finally, Nrp2+/- and Nrp2-/- but not Nrp2+/+, mice have impaired cognitive flexibility demonstrated by reward-based reversal learning, a task associated with hippocampal circuit function. Together these data demonstrate a broad reduction in interneuron subtypes and compromised inhibition in CA1 of Nrp2-/- mice, which could contribute to the heightened seizure susceptibility and behavioral deficits consistent with an ASD/epilepsy phenotype.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Epilepsia , Animais , Transtorno do Espectro Autista/genética , Comorbidade , Hipocampo , Humanos , Interneurônios , Camundongos , Neuropilina-2/genética
15.
J Neurosci ; 29(40): 12542-57, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19812329

RESUMO

Dopaminergic neurons in the mesodiencephalon (mdDA neurons) make precise synaptic connections with targets in the forebrain via the mesostriatal, mesolimbic, and mesoprefrontal pathways. Because of the functional importance of these remarkably complex ascending axon pathways and their implication in human disease, the mechanisms underlying the development of these connections are of considerable interest. Despite extensive in vitro studies, the molecular determinants that ensure the perfect formation of these pathways in vivo remain mostly unknown. Here, we determine the embryonic origin and ontogeny of the mouse mesoprefrontal pathway and use these data to reveal an unexpected requirement for semaphorin 3F (Sema3F) and its receptor neuropilin-2 (Npn-2) during mdDA pathway development using tissue culture approaches and analysis of sema3F(-/-), npn-2(-/-), and npn-2(-/-);TH-Cre mice. We show that Sema3F is a bifunctional guidance cue for mdDA axons, some of which have the remarkable ability to regulate their responsiveness to Sema3F as they develop. During early developmental stages, Sema3F chemorepulsion controls previously uncharacterized aspects of mdDA pathway development through both Npn-2-dependent (axon fasciculation and channeling) and Npn-2-independent (rostral growth) mechanisms. Later on, chemoattraction mediated by Sema3F and Npn-2 is required to orient mdDA axon projections in the cortical plate of the medial prefrontal cortex. This latter finding demonstrates that regulation of axon orientation in the target field occurs by chemoattractive mechanisms, and this is likely to also apply to other neural systems. In all, this study provides a framework for additional dissection of the molecular basis of mdDA pathway development and disease.


Assuntos
Axônios/fisiologia , Padronização Corporal/fisiologia , Diencéfalo/embriologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuropilina-2/metabolismo , Prosencéfalo/embriologia , Animais , Dopamina/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neuritos/ultraestrutura , Neurônios/citologia , Transporte Proteico , Técnicas de Cultura de Tecidos
16.
Neuron ; 48(6): 949-64, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16364899

RESUMO

Neuropilins, secreted semaphorin coreceptors, are expressed in discrete populations of spinal motor neurons, suggesting they provide critical guidance information for the establishment of functional motor circuitry. We show here that motor axon growth and guidance are impaired in the absence of Sema3A-Npn-1 signaling. Motor axons enter the limb precociously, showing that Sema3A controls the timing of motor axon in-growth to the limb. Lateral motor column (LMC) motor axons within spinal nerves are defasciculated as they grow toward the limb and converge in the plexus region. Medial and lateral LMC motor axons show dorso-ventral guidance defects in the forelimb. In contrast, Sema3F-Npn-2 signaling guides the axons of a medial subset of LMC neurons to the ventral limb, but plays no major role in regulating their fasciculation. Thus, Sema3A-Npn-1 and Sema3F-Npn-2 signaling control distinct steps of motor axon growth and guidance during the formation of spinal motor connections.


Assuntos
Cones de Crescimento/metabolismo , Neurônios Motores/metabolismo , Neuropilinas/metabolismo , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/embriologia , Animais , Padronização Corporal/fisiologia , Plexo Braquial/embriologia , Diferenciação Celular/fisiologia , Embrião de Galinha , Membro Anterior/embriologia , Membro Anterior/inervação , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cones de Crescimento/ultraestrutura , Membro Posterior/embriologia , Membro Posterior/inervação , Botões de Extremidades/embriologia , Botões de Extremidades/inervação , Plexo Lombossacral/embriologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neurônios Motores/citologia , Músculo Esquelético/embriologia , Músculo Esquelético/inervação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo
17.
J Neurosci ; 27(50): 13667-79, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18077678

RESUMO

We report a cooperation between the neural adhesion molecule close homolog of L1 (CHL1) and the semaphorin 3A (Sema3A) receptor, neuropilin 1 (Npn1), important for establishment of area-specific thalamocortical projections. CHL1 deletion in mice selectively disrupted the projection of somatosensory thalamic axons from the ventrobasal (VB) nuclei, causing them to shift caudally and target the visual cortex. At the ventral telencephalon, an intermediate target with graded Sema3A expression, VB axons were caudally shifted in CHL1- embryos and in Npn1(Sema-/-) mutants, in which axons are nonresponsive to Sema3A. CHL1 colocalized with Npn1 on thalamic axons, and associated with Npn1 through a sequence in the CHL1 Ig1 domain that was required for Sema3A-induced growth cone collapse. These results identify a novel function for CHL1 in thalamic axon responsiveness to ventral telencephalic cues, and demonstrate a role for CHL1 and Npn1 in establishment of proper targeting of specific thalamocortical projections.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular/fisiologia , Vias Neurais/fisiologia , Neuropilina-1/fisiologia , Telencéfalo/fisiologia , Tálamo/fisiologia , Animais , Moléculas de Adesão Celular/genética , Cruzamentos Genéticos , Cones de Crescimento/fisiologia , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/embriologia , Neuropilina-1/genética , Estrutura Terciária de Proteína/fisiologia , Telencéfalo/citologia , Telencéfalo/embriologia , Tálamo/citologia , Tálamo/embriologia
18.
Methods Mol Biol ; 1493: 209-222, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27787853

RESUMO

Primary tissue culture is an invaluable technique in cell biology and has a long history in demonstrating its versatility in characterizing cellular morphology, function, and behavior. Here, we describe a modified, low density, long-term, primary neuron culture system to characterize dendritic morphology and synaptic spine organization in developing mouse cortical neurons. While this method can be applied to investigate the signaling pathways of a range of extracellular cues' effect on neuronal development, we focus on how distinct secreted semaphorins regulate dendritic elaboration and spine morphogenesis in deep layer cortical neurons.


Assuntos
Dendritos/metabolismo , Semaforinas/fisiologia , Animais , Células Cultivadas , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Morfogênese , Neurônios/citologia , Neurônios/metabolismo , Semaforinas/metabolismo
19.
Invest Ophthalmol Vis Sci ; 58(10): 4318­4331, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28806446

RESUMO

Purpose: Rod photoreceptor terminals respond to retinal injury with retraction and sprouting. Since the guidance cue Semaphorin3A (Sema3A) is observed in the retina after injury, we asked whether Sema3A contributes to structural plasticity in rod photoreceptors. Methods: We used Western blots and alkaline phosphatase (AP)-tagged neuropilin-1 (NPN-1) to detect the expression of Sema3A in an organotypic model of porcine retinal detachment. We then examined Sema3A binding to cultured salamander rod photoreceptors using AP-tagged Sema3A. For functional analysis, we used a microspritzer to apply a gradient of Sema3A-Fc to isolated salamander rod photoreceptors over 24 hours. Results: Sema3A protein was biochemically detected in porcine retinal explants in the retina 7, 24, and 72 hours after detachment. In sections, NPN-1 receptor was bound to the inner and outer retina. For isolated rod photoreceptors, Sema3A localized to synaptic terminals and to neuritic processes after 1 week in vitro. In microspritzed rod photoreceptors, process initiation occurred away from high concentrations of Sema3A. Sema3A significantly decreased the number of processes formed by rod photoreceptors although the average length of processes was not affected. The cellular orientation of rod photoreceptors relative to the microspritzer also significantly changed over time; this effect was reduced with the Sema3A inhibitor, xanthofulvin. Conclusion: Sema3A is expressed in the retina after detachment, binds to rod photoreceptors, affects cell orientation, and reduces photoreceptor process initiation in vitro. Our results suggest that Sema3A contributes to axonal retraction in retinal injury, whereas rod neuritic sprouting and regenerative synaptogenesis may require a reduction in semaphorin signaling.


Assuntos
Modelos Animais de Doenças , Plasticidade Neuronal/fisiologia , Descolamento Retiniano/metabolismo , Neurônios Retinianos/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Semaforina-3A/metabolismo , Fosfatase Alcalina/metabolismo , Ambystoma , Animais , Western Blotting , Células Cultivadas , Neuritos/fisiologia , Neuropilina-1/metabolismo , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas , Suínos
20.
Wiley Interdiscip Rev Dev Biol ; 4(3): 283-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25619385

RESUMO

For bilaterally symmetric organisms, the transfer of information between the left and right side of the nervous system is mediated by commissures formed by neurons that project their axons across the body midline to the contralateral side of the central nervous system (CNS). After crossing the midline, many of these axons must travel long distances to reach their targets, including those that extend from spinal commissural neurons. Owing to the highly stereotyped trajectories of spinal commissural neurons that can be divided into several segments as these axons project to their targets, it is an ideal system for investigators to ask fundamental questions related to mechanisms of short- and long-range axon guidance, fasciculation, and choice point decisions at the midline intermediate target. In addition, studies of patterning genes of the nervous system have revealed complex transcription factor codes that function in a combinatorial fashion to specify individual classes of spinal neurons including commissural neurons. Despite these advances and the functional importance of spinal commissural neurons in mediating the transfer of external sensory information from the peripheral nervous system (PNS) to the CNS, only a handful of studies have begun to elucidate the mechanistic logic underlying their long-range pathfinding and the characterization of their synaptic targets. Using in vitro assays, in vivo labeling methodologies, in combination with both loss- and gain-of-function experiments, several studies have revealed that the molecular mechanisms of long-range spinal commissural axon pathfinding involve an interplay between classical axon guidance cues, morphogens and cell adhesion molecules. For further resources related to this article, please visit the WIREs website.


Assuntos
Axônios/fisiologia , Interneurônios Comissurais/citologia , Interneurônios Comissurais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Neurológicos , Neurogênese/fisiologia , Vertebrados/embriologia , Animais , Moléculas de Adesão Celular/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA