Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527359

RESUMO

A novel, rapid, and facile method for one-step sonoelectrochemical synthesis of zinc oxide nanoparticles (UEZ) was introduced in this study. The optimum operating parameters have been selected at a voltage of 7.5 V, KCl concentration of 0.5 M, and the reaction time of 60 min. The as-prepared UEZ were characterized by XRD, SEM, and HRTEM. It was found that the UEZ has a hexagonal wurtzite structure with high crystalline quality, good purity, a size range of 30-100 nm, and good photocatalytic degradation of methylene blue. This work provides a facile route for large-scale synthesizing ZnO nanoparticles via anodization.

2.
RSC Adv ; 13(16): 11171-11181, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37056971

RESUMO

In this work, a new facile one-spot method has been designed to fabricate a magnetic recyclable Fe3O4/rice husk biochar photocatalyst (FBP) for the removal of Ciprofloxacin (CIP) in aqueous solution. This method combines ultrasonic-assisted impregnation and precipitation, which can overcome the difficulties of long-time reactions, complex procedures, and extreme condition requirements. The successful fabrication of the Fe3O4/biochar material has been proven by a series of material characterization techniques, including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Raman, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and vibrating sample magnetometer (VSM). Moreover, the as-product FBP exhibited the excellent ability of photodegrading CIP and the possibility of magnetic recovery from the aqueous solution, suggesting a potential solution for removing antibiotic pollutants in environmental remediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA