Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Brain Behav Evol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857586

RESUMO

INTRODUCTION: Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. METHODS: We reared newly-eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2 to 53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. RESULTS: We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. CONCLUSION: These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32506318

RESUMO

Our understanding of how sensory structure design is coupled with neural processing capacity to adaptively support division of labor is limited. Workers of the remarkably polymorphic fungus-growing ant Atta cephalotes are behaviorally specialized by size: the smallest workers (minims) tend fungi in dark subterranean chambers while larger workers perform tasks outside the nest. Strong differences in worksite light conditions are predicted to influence sensory and processing requirements for vision. Analyzing confocal scans of worker eyes and brains, we found that eye structure and visual neuropils appear to have been selected to maximize task performance according to light availability. Minim eyes had few ommatidia, large interommatidial angles and eye parameter values, suggesting selection for visual sensitivity over acuity. Large workers had larger eyes with disproportionally more and larger ommatidia, and smaller interommatidial angles and eye parameter values, indicating peripheral sensory adaptation to ambient rainforest light. Optic lobes and mushroom body collars were disproportionately small in minims. Within the optic lobe, lamina and lobula relative volumes increased with worker size whereas medulla volume decreased. Visual system phenotypes thus correspond to task specializations in dark or light environments and illustrate a functional neuroplasticity underpinning division of labor in this socially complex agricultural ant.


Assuntos
Formigas/anatomia & histologia , Formigas/fisiologia , Animais , Formigas/classificação , Comportamento Animal , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Olho/anatomia & histologia , Plasticidade Neuronal , Tamanho do Órgão , Análise e Desempenho de Tarefas , Vias Visuais
3.
Brain Behav Evol ; 93(1): 4-18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30982030

RESUMO

The behavioral demands of living in social groups have been linked to the evolution of brain size and structure, but how social organization shapes investment and connectivity within and among functionally specialized brain regions remains unclear. To understand the influence of sociality on brain evolution in ants, a premier clade of eusocial insects, we statistically analyzed patterns of brain region size covariation as a proxy for brain region connectivity. We investigated brain structure covariance in young and old workers of two formicine ants, the Australasian weaver ant Oecophylla smaragdina, a pinnacle of social complexity in insects, and its socially basic sister clade Formica subsericea. As previously identified in other ant species, we predicted that our analysis would recognize in both species an olfaction-related brain module underpinning social information processing in the brain, and a second neuroanatomical cluster involved in nonolfactory sensorimotor processes, thus reflecting conservation of compartmental connectivity. Furthermore, we hypothesized that covariance patterns would reflect divergence in social organization and life histories either within this species pair or compared to other ant species. Contrary to our predictions, our covariance analyses revealed a weakly defined visual, rather than olfactory, sensory processing cluster in both species. This pattern may be linked to the reliance on vision for worker behavioral performance outside of the nest and the correlated expansion of the optic lobes to meet navigational demands in both species. Additionally, we found that colony size and social organization, key measures of social complexity, were only weakly correlated with brain modularity in these formicine ants. Worker age also contributed to variance in brain organization, though in different ways in each species. These findings suggest that brain organization may be shaped by the divergent life histories of the two study species. We compare our findings with patterns of brain organization of other eusocial insects.


Assuntos
Encéfalo/fisiologia , Tamanho do Órgão/fisiologia , Fatores Etários , Animais , Formigas/fisiologia , Comportamento Animal/fisiologia , Evolução Biológica , Cognição/fisiologia , Relações Interpessoais , Olfato , Comportamento Social
4.
Brain Behav Evol ; 89(3): 195-208, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28505612

RESUMO

Miniaturized nervous systems have been thought to limit behavioral ability, and animals with miniaturized brains may be less flexible when challenged by injuries resulting in sensory deficits that impact the development, maintenance, and plasticity of small-scale neural networks. We experimentally examined how injuries to sensory structures critical for olfactory ability affect behavioral performance in workers of the ant Pheidole dentata, which have minute brains (0.01 mm3) and primarily rely on the perception and processing of chemical signals and cues to direct their social behavior. We employed unilateral antennal denervation to decrease the olfactory perception ability of workers and quantified consequential neuroanatomical and behavioral performance effects. Postablation neuroanatomical metrics revealed a 25% reduction in the volume of the antennal lobe ipsilateral to the antennal lesion relative to the contralateral lobe, indicating atrophy of the input-deprived tissue. However, antennectomy did not affect the volumes of the mushroom body or its subcompartments or the number of mushroom body synaptic complexes (microglomeruli) in either brain hemisphere. Synapsin immunoreactivity, however, was significantly higher in the ipsilateral mushroom body calyces, which could reflect presynaptic potentiation and homeostatic compensation in higher-order olfactory regions. Despite tissue loss caused by antennal lesioning and resulting unilateral sensory deprivation, the ability of workers to perform behaviors that encompass the breadth of their task repertoire and meet demands for colony labor remained largely intact. The few behavioral deficits recorded were restricted to pheromone trail-following ability, a result that was expected due to the need for bilateral olfactory input to process spatial odor information. Our macroscopic and cellular neuroanatomical measurements and assessments of task performance demonstrate that the miniaturized brains of P. dentata workers and their sensorimotor functions are remarkably robust to injury-related size reduction and remain capable of generating behaviors required to respond appropriately to chemical social signals and effectively nurse immatures, as well as participate in coordinated foraging.


Assuntos
Formigas/fisiologia , Lesões Encefálicas/fisiopatologia , Corpos Pedunculados/fisiologia , Animais , Formigas/metabolismo , Antenas de Artrópodes/lesões , Antenas de Artrópodes/fisiologia , Comportamento Animal/fisiologia , Encéfalo , Sinais (Psicologia) , Sistema Nervoso/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso/genética , Percepção Olfatória/fisiologia , Feromônios , Comportamento Social , Ferimentos e Lesões/fisiopatologia
5.
Proc Biol Sci ; 283(1841)2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798312

RESUMO

The metabolic expense of producing and operating neural tissue required for adaptive behaviour is considered a significant selective force in brain evolution. In primates, brain size correlates positively with group size, presumably owing to the greater cognitive demands of complex social relationships in large societies. Social complexity in eusocial insects is also associated with large groups, as well as collective intelligence and division of labour among sterile workers. However, superorganism phenotypes may lower cognitive demands on behaviourally specialized workers resulting in selection for decreased brain size and/or energetic costs of brain metabolism. To test this hypothesis, we compared brain investment patterns and cytochrome oxidase (COX) activity, a proxy for ATP usage, in two ant species contrasting in social organization. Socially complex Oecophylla smaragdina workers had larger brain size and relative investment in the mushroom bodies (MBs)-higher order sensory processing compartments-than the more socially basic Formica subsericea workers. Oecophylla smaragdina workers, however, had reduced COX activity in the MBs. Our results suggest that as in primates, ant group size is associated with large brain size. The elevated costs of investment in metabolically expensive brain tissue in the socially complex O. smaragdina, however, appear to be offset by decreased energetic costs.


Assuntos
Formigas/fisiologia , Encéfalo/fisiologia , Comportamento Social , Animais , Cognição , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Metabolismo Energético , Corpos Pedunculados/fisiologia , Tamanho do Órgão
6.
Proc Biol Sci ; 283(1822)2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26740614

RESUMO

Analyses of senescence in social species are important to understanding how group living influences the evolution of ageing in society members. Social insects exhibit remarkable lifespan polyphenisms and division of labour, presenting excellent opportunities to test hypotheses concerning ageing and behaviour. Senescence patterns in other taxa suggest that behavioural performance in ageing workers would decrease in association with declining brain functions. Using the ant Pheidole dentata as a model, we found that 120-day-old minor workers, having completed 86% of their laboratory lifespan, showed no decrease in sensorimotor functions underscoring complex tasks such as alloparenting and foraging. Collaterally, we found no age-associated increases in apoptosis in functionally specialized brain compartments or decreases in synaptic densities in the mushroom bodies, regions associated with integrative processing. Furthermore, brain titres of serotonin and dopamine--neuromodulators that could negatively impact behaviour through age-related declines--increased in old workers. Unimpaired task performance appears to be based on the maintenance of brain functions supporting olfaction and motor coordination independent of age. Our study is the first to comprehensively assess lifespan task performance and its neurobiological correlates and identify constancy in behavioural performance and the absence of significant age-related neural declines.


Assuntos
Formigas/fisiologia , Comportamento Animal , Encéfalo/fisiologia , Corpos Pedunculados/fisiologia , Comportamento Social , Envelhecimento , Animais , Apoptose , Encéfalo/citologia , Dopamina/metabolismo , Longevidade , Serotonina/metabolismo
7.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26136448

RESUMO

Complex social structure in eusocial insects can involve worker morphological and behavioural differentiation. Neuroanatomical variation may underscore worker division of labour, but the regulatory mechanisms of size-based task specialization in polymorphic species are unknown. The Australian weaver ant, Oecophylla smaragdina, exhibits worker polyphenism: larger major workers aggressively defend arboreal territories, whereas smaller minors nurse brood.Here, we demonstrate that octopamine (OA) modulates worker size-related aggression in O. smaragdina. We found that the brains of majors had significantly higher titres of OA than those of minors and that OA was positively and specifically correlated with the frequency of aggressive responses to non-nestmates, a key component of territorial defence. Pharmacological manipulations that effectively switched OA action in major and minor worker brains reversed levels of aggression characteristic of each worker size class. Results suggest that altering OA action is sufficient to produce differences in aggression characteristic of size-related social roles. Neuromodulators therefore may generate variation in responsiveness to task-related stimuli associated with worker size differentiation and collateral behavioural specializations, a significant component of division of labour in complex social systems.


Assuntos
Formigas/fisiologia , Neurotransmissores/metabolismo , Octopamina/metabolismo , Agressão , Animais , Formigas/genética , Polimorfismo Genético , Queensland , Comportamento Social , Territorialidade
8.
Brain Behav Evol ; 85(1): 63-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25766867

RESUMO

A central question in brain evolution concerns how selection has structured neuromorphological variation to generate adaptive behavior. In social insects, brain structures differ between reproductive and sterile castes, and worker behavioral specializations related to morphology, age, and ecology are associated with intra- and interspecific variation in investment in functionally different brain compartments. Workers in the hyperdiverse ant genus Pheidole are morphologically and behaviorally differentiated into minor and major subcastes that exhibit distinct species-typical patterns of brain compartment size variation. We examined integration and modularity in brain organization and its developmental patterning in three ecotypical Pheidole species by analyzing intra- and interspecific morphological and neuroanatomical covariation. Our results identified two trait clusters, the first involving olfaction and social information processing and the second composed of brain regions regulating nonolfactory sensorimotor functions. Patterns of size covariation between brain compartments within subcastes were consistent with levels of behavioral differentiation between minor and major workers. Globally, brains of mature workers were more heterogeneous than brains of newly eclosed workers, suggesting diversified developmental trajectories underscore species- and subcaste-typical brain organization. Variation in brain structure associated with the striking worker polyphenism in our sample of Pheidole appears to originate from initially differentiated brain templates that further diverge through species- and subcaste-specific processes of maturation and behavioral development.


Assuntos
Formigas/anatomia & histologia , Formigas/fisiologia , Envelhecimento , Animais , Comportamento Animal , Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Especificidade da Espécie
9.
Proc Biol Sci ; 281(1784): 20140217, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24741016

RESUMO

The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.


Assuntos
Formigas/fisiologia , Abelhas/fisiologia , Evolução Biológica , Vespas/fisiologia , Animais , Formigas/anatomia & histologia , Abelhas/anatomia & histologia , Tamanho Corporal , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cognição , Tamanho do Órgão , Vespas/anatomia & histologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-24072064

RESUMO

Division of labor among eusocial insect workers is a hallmark of advanced social organization, but its underlying neural mechanisms are not well understood. We investigated whether differences in whole-brain levels of the biogenic amines dopamine (DA), serotonin (5HT), and octopamine (OA) are associated with task specialization and genotype in similarly sized and aged workers of the leaf-cutting ant Acromyrmex echinatior, a polyandrous species in which genotype correlates with worker task specialization. We compared amine levels of foragers and waste management workers to test for an association with worker task, and young in-nest workers across patrilines to test for a genetic influence on brain amine levels. Foragers had higher levels of DA and OA and a higher OA:5HT ratio than waste management workers. Patrilines did not significantly differ in amine levels or their ratios, although patriline affected worker body size, which correlated with amine levels despite the small size range sampled. Levels of all three amines were correlated within individuals in both studies. Among patrilines, mean levels of DA and OA, and OA and 5HT were also correlated. Our results suggest that differences in biogenic amines could regulate worker task specialization, but may be not be significantly affected by genotype.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Dopamina/fisiologia , Octopamina/fisiologia , Serotonina/fisiologia , Comportamento Social , Animais , Formigas/metabolismo , Química Encefálica , Feminino , Genótipo , Transmissão Sináptica
11.
Brain Behav Evol ; 82(4): 220-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24281765

RESUMO

The ecological dominance of ants has to a great extent been achieved through their collective action and complex social organization. Ants provide diverse model systems to examine the neural underpinnings of individual behavior and group action that contribute to their evolutionary success. Core elements of ant colony structure such as reproductive and ergonomic division of labor, task specialization, and social integration are beginning to be understood in terms of cellular neuroanatomy and neurochemistry. In this review we discuss the neuroethology of colony organization by focusing on the role of biogenic amines in the control of social behavior in ants. We examine the role of neuromodulation in significant sociobiological characteristics of ants, including reproductive hierarchies, colony foundation, social food flow, nestmate recognition, territoriality, and size- and age-related sensory perception and task performance as well as the involvement of monoamines in collective intelligence, the ultimate key to the global dominance of these remarkable superorganisms. We conclude by suggesting future directions for the analysis of the aminergic regulation of behavior and social complexity in ants.


Assuntos
Formigas/fisiologia , Comportamento Animal , Aminas Biogênicas/fisiologia , Animais , Comportamento Social
12.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-37425857

RESUMO

Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. We reared newly-eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2 to 53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.

13.
Artigo em Inglês | MEDLINE | ID: mdl-22134381

RESUMO

As social insect workers mature, outside-nest tasks associated with foraging and defense are typically performed at higher frequencies. Foraging in ants is often a pheromonally mediated collective action performed by mature workers; age-dependent differences in olfactory response thresholds may therefore proximately regulate task repertoire development. In the ant Pheidole dentata, foraging activity increases with chronological age in minor workers, and is chemically controlled. The onset of foraging in minor workers is accompanied by marked neuroanatomical and neurochemical changes, including synaptic remodeling in olfactory regions of the brain, proliferation of serotonergic neurons, and increased brain titers of monoamines, notably serotonin. We examined the linkage of serotonin and olfactory responsiveness by assaying trail-following performance in mature P. dentata minor workers with normal serotonin levels, or serotonin levels experimentally lowered by oral administration of the serotonin synthesis inhibitor α-methyltryptophan (AMTP). By assessing responsiveness to standardized pheromone trails, we demonstrate that trail-following behaviors are significantly reduced in serotonin-depleted workers. AMTP-treated individuals were less likely to initiate trail following, and oriented along pheromone trails for significantly shorter distances than untreated, similar-age workers. These results demonstrate for the first time that serotonin modulates olfactory processes and/or motor functions associated with cooperative foraging in ants.


Assuntos
Formigas/fisiologia , Comportamento Apetitivo/fisiologia , Neurônios/metabolismo , Feromônios/metabolismo , Serotonina/metabolismo , Comunicação Animal , Animais , Neurônios/efeitos dos fármacos , Triptofano/análogos & derivados , Triptofano/farmacologia
14.
Integr Comp Biol ; 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35617153

RESUMO

Metabolism, a metric of the energy cost of behavior, plays a significant role in social evolution. Body size and metabolic scaling are coupled, and a socioecological pattern of increased body size is associated with dietary change and the formation of larger and more complex groups. These consequences of the adaptive radiation of animal societies beg questions concerning energy expenses, a substantial portion of which may involve the metabolic rates of brains that process social information. Brain size scales with body size, but little is understood about brain metabolic scaling. Social insects such as ants show wide variation in worker body size and morphology that correlates with brain size, structure, and worker task performance, which is dependent on sensory inputs and information-processing ability to generate behavior. Elevated production and maintenance costs in workers may impose energetic constraints on body size and brain size that are reflected in patterns of metabolic scaling. Models of brain evolution do not clearly predict patterns of brain metabolic scaling, nor do they specify its relationship to task performance and worker ergonomic efficiency, two key elements of social evolution in ants. Brain metabolic rate is rarely recorded and therefore the conditions under which brain metabolism influences the evolution of brain size are unclear. We propose that studies of morphological evolution, colony social organization, and worker ergonomic efficiency should be integrated with analyses of species-specific patterns of brain metabolic scaling to advance our understanding of brain evolution in ants.

15.
Integr Comp Biol ; 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933126

RESUMO

Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g. basal, resting, field, maximally-active). The scaling of metabolism is usually highly correlated with the scaling of many life history traits, behaviors, physiological variables, and cellular/molecular properties, making determination of the causation of this pattern challenging. For across-species comparisons of resting and locomoting animals (but less so for across populations or during ontogeny), the mechanisms at the physiological and cellular level are becoming clear. Lower mass-specific metabolic rates of larger species at rest are due to a) lower contents of expensive tissues (brains, liver, kidneys), and b) slower ion leak across membranes at least partially due to membrane composition, with lower ion pump ATPase activities. Lower mass-specific costs of larger species during locomotion are due to lower costs for lower-frequency muscle activity, with slower myosin and Ca++ ATPase activities, and likely more elastic energy storage. The evolutionary explanation(s) for hypometric scaling remain(s) highly controversial. One subset of evolutionary hypotheses relies on constraints on larger animals due to changes in geometry with size; for example, lower surface-to-volume ratios of exchange surfaces may constrain nutrient or heat exchange, or lower cross-sectional areas of muscles and tendons relative to body mass ratios would make larger animals more fragile without compensation. Another subset of hypotheses suggests that hypometric scaling arises from biotic interactions and correlated selection, with larger animals experiencing less selection for mass-specific growth or neurolocomotor performance. A additional third type of explanation comes from population genetics. Larger animals with their lower effective population sizes and subsequent less effective selection relative to drift may have more deleterious mutations, reducing maximal performance and metabolic rates. Resolving the evolutionary explanation for the hypometric scaling of metabolism and associated variables is a major challenge for organismal and evolutionary biology. To aid progress, we identify some variation in terminology use that has impeded cross-field conversations on scaling. We also suggest that promising directions for the field to move forward include: 1) studies examining the linkages between ontogenetic, population-level, and cross-species allometries, 2) studies linking scaling to ecological or phylogenetic context, 3) studies that consider multiple, possibly interacting hypotheses, and 4) obtaining better field data for metabolic rates and the life history correlates of metabolic rate such as lifespan, growth rate and reproduction.

16.
Naturwissenschaften ; 98(9): 783-93, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21792597

RESUMO

Although several neurobiological and genetic correlates of aging and behavioral development have been identified in social insect workers, little is known about how other age-related physiological processes, such as muscle maturation, contribute to task performance. We examined post-eclosion growth of three major muscles of the head capsule in major and minor workers of the ant Pheidole dentata using workers of different ages with distinct task repertoires. Mandible closer muscle fibers, which provide bite force and are thus critical for the use of the mandibles for biting and load carrying, fill the posterio-lateral portions of the head capsule in mature, older workers of both subcastes. Mandible closer fibers of newly eclosed workers, in contrast, are significantly thinner in both subcastes and grow during at least the next 6 days in minor workers, suggesting this muscle has reduced functionality for a substantial period of adult life and thus constrains task performance capability. Fibers of the antennal muscles and the pharynx dilator, which control antennal movements and food intake, respectively, also increase significantly in thickness with age. However, these fibers are only slightly thinner in newly eclosed workers and attain their maximum thickness over a shorter time span in minors. The different growth rates of these functionally distinct muscles likely have consequences for how adult P. dentata workers, particularly minors, develop their full and diverse task repertoire as they age. Workers may be capable of feeding and interacting socially soon after eclosion, but require a longer period of development to effectively use their mandibles, which enable the efficient performance of tasks ranging from nursing to foraging and defense.


Assuntos
Formigas/fisiologia , Comportamento Animal , Envelhecimento , Animais , Formigas/crescimento & desenvolvimento , Formigas/metabolismo , Distribuição da Gordura Corporal , Músculos/anatomia & histologia , Músculos/fisiologia
17.
Front Cell Dev Biol ; 9: 673172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211973

RESUMO

Are eusociality and extraordinary aging polyphenisms evolutionarily coupled? The remarkable disparity in longevity between social insect queens and sterile workers-decades vs. months, respectively-has long been recognized. In mammals, the lifespan of eusocial naked mole rats is extremely long-roughly 10 times greater than that of mice. Is this robustness to senescence associated with social evolution and shared mechanisms of developmental timing, neuroprotection, antioxidant defenses, and neurophysiology? Focusing on brain senescence, we examine correlates and consequences of aging across two divergent eusocial clades and how they differ from solitary taxa. Chronological age and physiological indicators of neural deterioration, including DNA damage or cell death, appear to be decoupled in eusocial insects. In some species, brain cell death does not increase with worker age and DNA damage occurs at similar rates between queens and workers. In comparison, naked mole rats exhibit characteristics of neonatal mice such as protracted development that may offer protection from aging and environmental stressors. Antioxidant defenses appear to be regulated differently across taxa, suggesting independent adaptations to life history and environment. Eusocial insects and naked mole rats appear to have evolved different mechanisms that lead to similar senescence-resistant phenotypes. Careful selection of comparison taxa and further exploration of the role of metabolism in aging can reveal mechanisms that preserve brain functionality and physiological resilience in eusocial species.

18.
J Insect Sci ; 10: 44, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20572790

RESUMO

Termites live in nests that can differ in microbial load and thus vary in degree of disease risk. It was hypothesized that termite investment in immune response would differ in species living in nest environments that vary in the richness and abundance of microbes. Using the drywood termite, Incisitermes schwarzi Banks (Isoptera: Kalotermitidae), as a model for species having low nest and cuticular microbial loads, the susceptibility of individuals and groups to conidia of the entomopathogenic fungus, Metarhizium anisopliae Sorokin (Hypocreales: Clavicipitaceae), was examined. The survivorship of I. schwarzi was compared to that of the dampwood termite, Zootermopsis angusticollis Hagen (Termopsidae), a species with comparatively high microbial loads. The results indicated that I. schwarzi derives similar benefits from group living as Z. angusticollis: isolated termites had 5.5 times the hazard ratio of death relative to termites nesting in groups of 25 while termites in groups of 10 did not differ significantly from the groups of 25. The results also indicated, after controlling for the influence of group size and conidia exposure on survivorship, that Z. angusticollis was significantly more susceptible to fungal infection than I. schwarzi, the former having 1.6 times the hazard ratio of death relative to drywood termites. Thus, disease susceptibility and individual investment in immunocompetence may not be dependent on interspecific variation in microbial pressures. The data validate prior studies indicating that sociality has benefits in infection control and suggest that social mechanisms of disease resistance, rather than individual physiological and immunological adaptations, may have been the principle target of selection related to variation in infection risk from microbes in the nest environment of different termite species.


Assuntos
Suscetibilidade a Doenças/imunologia , Ecossistema , Isópteros/imunologia , Comportamento de Nidação/fisiologia , Madeira , Animais , Isópteros/fisiologia , Água/análise
19.
PLoS One ; 14(3): e0213618, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917163

RESUMO

Strongly polyphenic social insects provide excellent models to examine the neurobiological basis of division of labor. Turtle ants, Cephalotes varians, have distinct minor worker, soldier, and reproductive (gyne/queen) morphologies associated with their behavioral profiles: small-bodied task-generalist minors lack the phragmotic shield-shaped heads of soldiers, which are specialized to block and guard the nest entrance. Gynes found new colonies and during early stages of colony growth overlap behaviorally with soldiers. Here we describe patterns of brain structure and synaptic organization associated with division of labor in C. varians minor workers, soldiers, and gynes. We quantified brain volumes, determined scaling relationships among brain regions, and quantified the density and size of microglomeruli, synaptic complexes in the mushroom body calyxes important to higher-order processing abilities that may underpin behavioral performance. We found that brain volume was significantly larger in gynes; minor workers and soldiers had similar brain sizes. Consistent with their larger behavioral repertoire, minors had disproportionately larger mushroom bodies than soldiers and gynes. Soldiers and gynes had larger optic lobes, which may be important for flight and navigation in gynes, but serve different functions in soldiers. Microglomeruli were larger and less dense in minor workers; soldiers and gynes did not differ. Correspondence in brain structure despite differences in soldiers and gyne behavior may reflect developmental integration, suggesting that neurobiological metrics not only advance our understanding of brain evolution in social insects, but may also help resolve questions of the origin of novel castes.


Assuntos
Comunicação Animal , Formigas/fisiologia , Encéfalo/fisiologia , Corpos Pedunculados/fisiologia , Animais , Comportamento Animal , Tamanho Corporal , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Feminino , Hierarquia Social , Masculino , Análise Multivariada , Corpos Pedunculados/anatomia & histologia , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Tamanho do Órgão , Fenótipo , Filogenia , Reprodução , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA