Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 16(38): 8782-8798, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32812997

RESUMO

This study investigated the effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer (LCE). Polydomain nematic LCE networks were synthesized from a thiol-acrylate Michael addition reaction in the isotropic state. The polydomain networks were stretched to different strain levels to induce alignment then crosslinked in a second stage photopolymerization process. The LCE networks were subjected to dynamic mechanical tests to measure the temperature-dependent storage modulus and uniaxial tension load-unload tests to measure the rate-dependence of the Young's modulus, mechanical dissipation, and characteristics of the soft stress response. Three-dimensional (3D) digital image correlation (DIC) was used to characterize the effect of domain/mesogen relaxation on the strain fields. All LCE networks exhibited a highly rate-dependent stress response with significant inelastic strains after unloading. The Young's modulus of the loading curve and hysteresis of the load-unload curves showed a power-law dependence on the strain rate. The Young's modulus increased with alignment and larger anisotropy and a smaller power-law exponent was measured for the Young's modulus and hysteresis for the highly aligned monodomains. The polydomain and pre-stretched networks loaded perpendicular to the alignment direction exhibited a soft stress response that featured a rate-dependent peak stress, strain-softening, and strain-stiffening. The 3D-DIC strain fields for the polydomain network and programmed networks stretched in the perpendicular direction were highly heterogeneous, showing regions of alternating higher and lower strains. The strain variations increased initially with loading, peaked during the strain softening part of the stress response, then decreased during the strain stiffening part of the stress response. Greater variability was measured for lower strain rates. These observations suggest that local domain/mesogen relaxation led to the development of the heterogeneous strain patterns and strain softening in stress response. These findings improved understanding of the kinetics of mesogen relaxation and its contributions to the rate-dependent stress response and mechanical dissipation.

2.
Soft Matter ; 14(29): 6024-6036, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29974115

RESUMO

Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.

3.
Soft Matter ; 14(6): 951-960, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29319713

RESUMO

Adaptable liquid crystal elastomers (LCEs) have recently emerged to provide a new and robust method to program monodomain LCE samples. When a constant stress is applied with active bond exchange reactions (BERs), polymer chains and mesogens gradually align in the strain direction. Mesogen alignment is maintained after removing the BER stimulus (e.g. by lowering the temperature) and the programmed LCE samples exhibit free-standing two-way shape switching behavior. Here, a new adaptable main-chain LCE system was developed with thermally induced transesterification BERs. The network combines the conventional properties of LCEs, such as an isotropic phase transition and soft elasticity, with the dynamic features of adaptable network polymers, which are malleable to stress relaxation due to the BERs. Polarized Fourier transform infrared measurements confirmed the alignment of polymer chains and mesogens after strain-induced programming. The influence of the creep stress, temperature, and time on the strain amplitude of two-way shape switching was examined. The LCE network demonstrates an innovative feature of reprogrammability, where the reversible shape-switching memory of programmed LCEs is readily deleted by free-standing heating as random BERs disrupt the mesogen alignment, so LCEs are reprogrammed after returning to the polydomain state. Due to the dynamic nature of the LCE network, it also exhibits a surface welding effect and can be fully dissolved in the organic solvent, which might be utilized for green and sustainable recycling of LCEs.

4.
Soft Matter ; 13(41): 7537-7547, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28956577

RESUMO

Control of the mesophase in liquid crystalline elastomers (LCEs) is a critical aspect in harnessing their unique stimuli-responsive properties. Few studies have compared nematic and smectic main-chain LCEs in a direct way. Traditionally, it is believed that the mesogen core and synthetic route determines the phase behavior. In this study, we hypothesized that tuning the LC phases in main-chain LCE systems can be achieved by varying the spacer length while maintaining the same mesogen (RM257). By increasing the length of dithiol alkyl spacers containing two to eleven carbons along the spacer backbone (C2 to C11), we can modulate the mesophase from nematic to smectic, tailor the nematic to isotropic transition temperature between 90 and 140 °C, and increase the average work capacity from 128 to 262 kJ m-3. Phase nano-segregation resulting in the smectic C phase is achieved at room temperature for the C6, C9, and C11 spacers. In a shape switching system, this manifests in impressive actuation stroke of 700%. Upon heating from room temperature, these samples transition into the nematic and later, the isotropic phase. Furthermore, this segregation occurs along with polymer chain crystallinity, which increases the modulus of the networks by an order of magnitude; however, the crystallization rate is highly time dependent on the spacer length and can vary between 5 minutes for the C11 spacer and 24 hours for shorter spacers. This study presents several possibilities of a thiol-acrylate reaction in modulation of the thermomechanical and liquid-crystalline properties of LCEs and discusses their potential use for biomedical applications.

5.
Adv Mater ; 34(14): e2200272, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35128733

RESUMO

A unique rate-dependent energy absorption behavior of liquid crystal elastomer (LCE)-based architected materials is reported. The architected materials consist of repeating unit cells of bistable tilted LCE beams sandwiched between stiff supports. The viscoelastic behavior of the LCE causes the energy absorption to increase with strain rate according to a power-law relationship, which can be modulated by changing the degree of mesogen alignment and the loading direction relative to the director. For a strain rate of 600 s-1 , the unit cell exhibits up to a 5 MJ m-3 energy absorption density, which is two orders of magnitude higher than the same structure fabricated from poly(dimethylsiloxane) elastomer and is comparable to the dissipation from irreversible plastic deformation exhibited by denser metals. For a multilayered structure of unit cells, nonuniform buckling of the different layers produces additional viscoelastic dissipation. This synergistic interaction between viscoelastic dissipation and snap-through buckling causes the energy absorption density to increase with the number of layers. The sequence of cell collapse can be controlled by grading the beam thickness to further promote viscous dissipation and enhance the energy absorption density. It is envisioned that the study can contribute to the development of lightweight extreme energy-absorbing metamaterials.

6.
ACS Appl Mater Interfaces ; 13(11): 12698-12708, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33369399

RESUMO

Polymer foams are an essential class of lightweight materials used to protect assets against mechanical insults, such as shock and vibration. Two features are important to enhance their energy absorption characteristics: the foam structure and the matrix phase mechanical behavior. This study investigates novel approaches to control both of these features to enhance the energy absorption capability of flexible lattice foams. First, we consider 3D printing via digital light processing (DLP) as a method to control the foam mesostructure across a suite of periodic unit cells. Second, we introduce an additional energy dissipation mechanism in the solid matrix phase material by 3D printing the lattice foams with polydomain liquid crystal elastomer (LCE), which undergo a mechanically induced phase transition under large strains. This phase transition is associated with LC mesogen rotation and alignment and provides a second mechanism for mechanical energy dissipation in addition to the viscoelastic relaxation of the polymer network. We contrast the 3D printed LCE lattices with conventional, thermomechanically near-equivalent elastomer lattice foams to quantify the energy-absorbing enhancement the LCE matrix phase provides. Under cyclic quasi-static uniaxial compression conditions, the LCE lattices show dramatically enhanced energy dissipation in uniaxial compression compared to the non-LCE equivalent foams printed with a commercially available photocurable elastomer resin. The lattice geometry also plays a prominent role in determining the energy dissipation ratio between the LCE and non-LCE foams. We show that when increasing the lattice connectivity, the foam deformation transitions from bending-dominated to stretching-dominated deformations, which generates higher axial strains in the struts and higher energy dissipation in the lattice foam, as stretching allows greater mesogen rotation than bending. The LCE foams demonstrate superior energy absorption during the repeated dynamic loading during drop testing compared with the non-LCE equivalent foams, demonstrating the potential of LCEs to enhance physical protection systems against mechanical impact.

7.
Adv Mater ; 32(28): e2000797, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32508011

RESUMO

Digital Light Processing (DLP) 3D printing enables the creation of hierarchical complex structures with specific micro- and macroscopic architectures that are impossible to achieve through traditional manufacturing methods. Here, this hierarchy is extended to the mesoscopic length scale for optimized devices that dissipate mechanical energy. A photocurable, thus DLP-printable main-chain liquid crystal elastomer (LCE) resin is reported and used to print a variety of complex, high-resolution energy-dissipative devices. Using compressive mechanical testing, the stress-strain responses of 3D-printed LCE lattice structures are shown to have 12 times greater rate-dependence and up to 27 times greater strain-energy dissipation compared to those printed from a commercially available photocurable elastomer resin. The reported behaviors of these structures provide further insight into the much-overlooked energy-dissipation properties of LCEs and can inspire the development of high-energy-absorbing device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA