Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 43(3): 564-573, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31613991

RESUMO

Type 1 Gaucher disease (GD1), a glycosphingolipid storage disorder caused by deficient activity of lysosomal glucocerebrosidase, is classically considered non-neuronopathic. However, current evidence challenges this view. Multiple studies show that mutations in GBA1 gene and decreased glucocerebrosidase activity are associated with increased risk for Parkinson disease. We tested the hypothesis that subjects with GD1 will show neurochemical abnormalities consistent with cerebral involvement. We performed Magnetic Resonance Spectroscopy at 7 T to quantify neurochemical profiles in participants with GD1 (n = 12) who are on stable therapy. Age and gender matched healthy participants served as controls (n = 13). Neurochemical profiles were obtained from parietal white matter (PWM), posterior cingulate cortex (PCC), and putamen. Further, in the GD1 group, the neurochemical profiles were compared between individuals with and without a single L444P allele. We observed significantly lower levels of key neuronal markers, N-acetylaspartate, γ-aminobutyric acid, glutamate and glutamate-to-glutamine ratio in PCC of participants with GD1 compared to healthy controls (P < .015). Glutamate concentration was also lower in the putamen in GD1 (P = .01). Glucose + taurine concentration was significantly higher in PWM (P = .04). Interestingly, individuals without L444P had significantly lower aspartate and N-acetylaspartylglutamate in PCC (both P < .001), although this group was 7 years younger than those with an L444P allele. This study demonstrates neurochemical abnormalities in individuals with GD1, for which clinical and prognostic significance remains to be determined. Further studies in a larger cohort are required to confirm an association of neurochemical levels with mutation status and glucocerebrosidase structure and function. SYNOPSIS: Ultrahigh field magnetic resonance spectroscopy reveals abnormalities in neurochemical profiles in patients with GD1 compared to matched healthy controls.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Doença de Gaucher/patologia , Doença de Gaucher/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Eletrofisiologia , Feminino , Doença de Gaucher/terapia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Padrão de Cuidado
2.
Mol Genet Metab Rep ; 25: 100667, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33335836

RESUMO

Gaucher disease is an autosomal recessive metabolic disorder caused by mutations in GBA1, which encodes for the lysosomal hydrolase enzyme, ß-glucocerebrosidase. The resulting misfolded protein can trigger endoplasmic reticulum stress and an unfolded protein response within the affected cells. The enzyme deficiency leads to accumulation of its substrates, glucosylceramide and glucosylsphingosine, within macrophage lysosomes and with prominent disease manifestations in macrophage rich tissues. Resultant lysosomal pathology and impaired autophagy leads to redox imbalance, mitochondrial dysfunction and intracellular oxidative stress. Here we have systematically examined a role for oxidative stress in individuals affected by Gaucher disease. We compared multiple oxidative stress biomarkers in plasma and red blood cell samples from patients who are currently untreated, with those who are stable on standard-of-care therapy, and with healthy controls. We found significant differences in key oxidative stress biomarkers in untreated patients compared to healthy control. In treated patients, results generally fell between the controls and the untreated patients. Interestingly, even asymptomatic and minimally symptomatic untreated patients had evidence of significant systemic oxidative stress. We conclude that underlying oxidative stress may contribute to Gaucher disease pathophysiology including long-term adverse outcomes such as Parkinsonism and malignancies. Therapies targeting oxidative stress may prove useful as adjuvant treatments for Gaucher disease and other lysosomal storage disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA