Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(4): 565-574, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977411

RESUMO

Preimplantation genetic testing commonly employs simplistic copy-number analyses to screen for aneuploidy in blastocyst trophectoderm biopsies. Interpreting intermediate copy number alone as evidence of mosaicism has led to suboptimal estimation of its prevalence. Because mosaicism originates from mitotic nondisjunction, utilizing SNP microarray technology to identify the cell-division origins of aneuploidy might provide a more accurate estimation of its prevalence. The present study develops and validates a method of determining the cell-division origin of aneuploidy in the human blastocyst by using both genotyping and copy-number data in parallel. The concordance of predicted origins with expected results was demonstrated in a series of truth models (99%-100%). This included determination of X chromosome origins from a subset of normal male embryos, determination of the origins of translocation chromosome-related imbalances via embryos from couples with structural rearrangements, and prediction of either mitotic or meiotic origins via multiple rebiopsies of embryos with aneuploidy. In a cohort of blastocysts with parental DNA (n = 2,277), 71% were euploid, 27% were meiotic aneuploid, and 2% were mitotic aneuploid, indicating a low frequency of bona fide mosaicism in the human blastocyst (mean maternal age: 34.4). Chromosome-specific trisomies in the blastocyst were also consistent with observations previously established in products of conception. The ability to accurately identify mitotic-origin aneuploidy in the blastocyst could benefit and better inform individuals whose IVF cycle results in all aneuploid embryos. Clinical trials with this methodology might also help provide a definitive answer regarding the reproductive potential of bona fide mosaic embryos.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Masculino , Adulto , Diagnóstico Pré-Implantação/métodos , Blastocisto , Aneuploidia , Testes Genéticos/métodos , Mosaicismo
2.
Am J Hum Genet ; 109(9): 1572-1581, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055209

RESUMO

In IVF cycles, the application of aneuploidy testing at the blastocyst stage is quickly growing, and the latest reports estimate almost half of cycles in the US undergo preimplantation genetic testing for aneuploidies (PGT-A). Following PGT-A cycles, understanding the predictive value of an aneuploidy result is paramount for making informed decisions about the embryo's fate and utilization. Compelling evidence from non-selection trials strongly supports that embryos diagnosed with a uniform whole-chromosome aneuploidy very rarely result in the live birth of a healthy baby, while their transfer exposes women to significant risks of miscarriage and chromosomally abnormal pregnancy. On the other hand, embryos displaying low range mosaicism for whole chromosomes have shown reproductive capabilities somewhat equivalent to uniformly euploid embryos, and they have comparable clinical outcomes and gestational risks. Therefore, given their clearly distinct biological origin and clinical consequences, careful differentiation between uniform and mosaic aneuploidy is critical in both the clinical setting when counseling individuals and in the research setting when presenting aneuploidy studies in human embryology. Here, we focus on the evidence gathered so far on PGT-A diagnostic predictive values and reproductive outcomes observed across the broad spectrum of whole-chromosome aneuploidies detected at the blastocyst stage to obtain evidence-based conclusions on the clinical management of aneuploid embryos in the quickly growing PGT-A clinical setting.


Assuntos
Diagnóstico Pré-Implantação , Aneuploidia , Blastocisto , Feminino , Fertilização in vitro , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nascido Vivo , Mosaicismo , Gravidez
3.
J Assist Reprod Genet ; 41(1): 121-126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957533

RESUMO

PURPOSE: This study aimed to evaluate whether a high-throughput high-resolution PGT-A method can detect copy number variants (CNVs) that could have clinical implications for patients and their embryos. METHODS: A prospective analysis of PGT-A cases was conducted using a high-resolution SNP microarray platform with over 820,000 probes. Cases where multiple embryos possessed the same segmental imbalance were identified, and preliminary PGT-A reports were issued recommending either parental microarray or conventional karyotyping to identify CNVs or translocations. RESULTS: Analysis of 6080 sequential PGT-A cases led to identification of 41 cases in which incidental findings were observed (0.7%) and parental testing was recommended. All cases, in which parental studies were completed, confirmed the original PGT-A incidental findings. In 2 of the cases, parental studies indicated a pathogenic variant with clinical implications for the associated embryos. In one of these cases, the patient was identified as a carrier of a duplication in chromosome 15q11.2:q11.2 (SNRPN + +), which is associated with autism spectrum disorder. In the second case, the patient was heterozygous positive for an interstitial deletion of 3p26.1:p26.3, which is associated with 3p deletion syndrome and had clinical implications for the patient and associated embryos. In each case, parental studies were concordant with PGT-A findings and revealed the presence of an otherwise unknown CNV. CONCLUSION: High-throughput high-resolution SNP array-based PGT-A has the ability to detect previously unknown and clinically significant parental deletions, duplications, and translocations. The use of cost-effective SNP array-based PGT-A methods may improve the effectiveness of PGT by identifying and preventing previously unknown pathogenic CNVs in children born to patients seeking in vitro fertilization.


Assuntos
Transtornos Cromossômicos , Diagnóstico Pré-Implantação , Criança , Feminino , Humanos , Gravidez , Aneuploidia , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Variações do Número de Cópias de DNA/genética , Fertilização in vitro , Testes Genéticos/métodos , Cariotipagem , Diagnóstico Pré-Implantação/métodos , Translocação Genética/genética
4.
Prenat Diagn ; 41(5): 545-553, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32920823

RESUMO

Preimplantation genetic testing for aneuploidy (PGT-A) reduces miscarriage risk, increases the success of IVF, shortens time to pregnancy, and reduces multiple gestation rates without compromising outcomes. The progression of PGT-A has included common application of next-generation sequencing (NGS) from single nucleotide polymorphism microarray, quantitative real-time PCR, and array comparative hybridization platforms of analysis. Additional putative advances in PGT-A capability include classifying embryos as mosaic and predicting the presence of segmental imbalance. A critical component in the process of technical validation of these advancements involves evaluation of concordance between reanalysis results and initial testing results. While many independent studies have investigated the concordance of results obtained from the remaining embryo with the original PGT-A diagnosis, compilation and systematic analysis of published data has not been performed. Here, we review results from 26 primary research articles describing concordance in 1271 human blastocysts from 2260 pairwise comparisons. Results illustrate significantly higher discordance from PGT-A methods which utilize NGS and include prediction of mosaicism or segmental imbalance. These results suggest caution when considering new iterations PGT-A.


Assuntos
Aneuploidia , Blastocisto/citologia , Diagnóstico Pré-Implantação/tendências , Adulto , Blastocisto/fisiologia , Feminino , Humanos , Gravidez , Diagnóstico Pré-Implantação/métodos , Sensibilidade e Especificidade
5.
Annu Rev Genomics Hum Genet ; 18: 189-200, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28498723

RESUMO

Genetic testing of preimplantation embryos promises to prevent monogenic disease in children born to at-risk couples, the transfer of unbalanced embryos to patients carrying a balanced translocation, and the use of aneuploid embryos created during in vitro fertilization. Technologies have evolved from fluorescence in situ hybridization to next-generation-sequencing-based aneuploidy screening and allow for simultaneous testing of multiple genetic abnormalities in a single biopsy. The field has also shifted away from polar body or blastomere biopsy and toward trophectoderm biopsy as the new standard. This review describes the multitude of available platforms and methodologies used in contemporary preimplantation genetic testing.


Assuntos
Aneuploidia , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Mutação , Diagnóstico Pré-Implantação/métodos , Blastômeros , Cromossomos Humanos , Doenças Genéticas Inatas/genética , Humanos , Análise de Sequência de DNA
6.
Hum Reprod ; 35(9): 2134-2148, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32772081

RESUMO

STUDY QUESTION: What are the genetic factors that increase the risk of aneuploid egg production? SUMMARY ANSWER: A non-synonymous variant rs2303720 within centrosomal protein 120 (CEP120) disrupts female meiosis in vitro in mouse. WHAT IS KNOWN ALREADY: The production of aneuploid eggs, with an advanced maternal age as an established contributing factor, is the major cause of IVF failure, early miscarriage and developmental anomalies. The identity of maternal genetic variants contributing to egg aneuploidy irrespective of age is missing. STUDY DESIGN, SIZE, DURATION: Patients undergoing fertility treatment (n = 166) were deidentified and selected for whole-exome sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients self-identified their ethnic groups and their ages ranged from 22 to 49 years old. The study was performed using genomes from White, non-Hispanic patients divided into controls (97) and cases (69) according to the number of aneuploid blastocysts derived during each IVF procedure. Following a gene prioritization strategy, a mouse oocyte system was used to validate the functional significance of the discovered associated genetic variants. MAIN RESULTS AND THE ROLE OF CHANCE: Patients producing a high proportion of aneuploid blastocysts (considered aneuploid if they missed any of the 40 chromatids or had extra copies) were found to carry a higher mutational burden in genes functioning in cytoskeleton and microtubule pathways. Validation of the functional significance of a non-synonymous variant rs2303720 within Cep120 on mouse oocyte meiotic maturation revealed that ectopic expression of CEP120:p.Arg947His caused decreased spindle microtubule nucleation efficiency and increased incidence of aneuploidy. LIMITATIONS, REASONS FOR CAUTION: Functional validation was performed using the mouse oocyte system. Because spindle building pathways differ between mouse and human oocytes, the defects we observed upon ectopic expression of the Cep120 variant may alter mouse oocyte meiosis differently than human oocyte meiosis. Further studies using knock-in 'humanized' mouse models and in human oocytes will be needed to translate our findings to human system. Possible functional differences of the variant between ethnic groups also need to be investigated. WIDER IMPLICATIONS OF THE FINDINGS: Variants in centrosomal genes appear to be important contributors to the risk of maternal aneuploidy. Functional validation of these variants will eventually allow prescreening to select patients that have better chances to benefit from preimplantation genetic testing. STUDY FUNDING/COMPETING INTEREST(S): This study was funded through R01-HD091331 to K.S. and J.X. and EMD Serono Grant for Fertility Innovation to N.R.T. N.R.T. is a shareholder and an employee of Genomic Prediction. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Aneuploidia , Exoma , Adulto , Animais , Blastocisto , Proteínas de Ciclo Celular , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Oócitos , Sequenciamento do Exoma , Adulto Jovem
7.
Reproduction ; 160(5): A13-A17, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32413844

RESUMO

Since its introduction to clinical practice, preimplantation genetic testing (PGT) has become a standard of care for couples at risk of having children with monogenic disease and for chromosomal aneuploidy to improve outcomes for patients with infertility. The primary objective of PGT is to reduce the risk of miscarriage and genetic disease and to improve the success of infertility treatment with the delivery of a healthy child. Until recently, the application of PGT to more common but complex polygenic disease was not possible, as the genetic contribution to polygenic disease has been difficult to determine, and the concept of embryo selection across multiple genetic loci has been difficult to comprehend. Several achievements, including the ability to obtain accurate, genome-wide genotypes of the human embryo and the development of population-level biobanks, have now made PGT for polygenic disease risk applicable in clinical practice. With the rapid advances in embryonic polygenic risk scoring, diverse considerations beyond technical capability have been introduced.


Assuntos
Aneuploidia , Fertilização in vitro/normas , Doenças Fetais/diagnóstico , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Diagnóstico Pré-Implantação/métodos , Feminino , Doenças Fetais/genética , Doenças Genéticas Inatas/embriologia , Doenças Genéticas Inatas/genética , Humanos , Gravidez
10.
Reprod Biomed Online ; 36(4): 388-395, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29366772

RESUMO

Triploidy accounts for ~2% of natural pregnancies and 15% of cytogenetically abnormal miscarriages. This study aimed to validate triploidy detection in human blastocysts, its frequency and parental origin using genotyping data generated in parallel with chromosome copy number analysis by a targeted next generation sequencing (tNGS)-based comprehensive chromosome screening platform. Phase 1: diploid and triploid control samples were blinded, sequenced by tNGS and karyotype predictions compared for accuracy. Phase 2: tNGS was used to calculate the frequency of triploidy in 18,791 human blastocysts from trophectoderm (TE) biopsies. Phase 3: parental origin of the inherited extra alleles was evaluated by sequencing parental gDNA to validate triploidy predictions from Phase 2. All karyotypes and ploidy in controls from Phase 1 were correctly predicted by two independent methods. A blastocyst triploidy frequency of 0.474% (89/18,791) was observed in Phase 2 of the study. Finally, five suspected triploid blastocysts with parental DNA available were confirmed to be triploid and of maternal origin. tNGS provides higher sequencing depth in contrast to other contemporary NGS platforms, allowing for accurate single nucleotide polymorphism calling and accurate detection of triploidy in TE biopsies. Triploidy in intracytoplasmic sperm injection-derived blastocysts is rare and mostly of maternal origin.


Assuntos
Blastocisto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Diagnóstico Pré-Implantação/métodos , Triploidia , Transferência Embrionária/métodos , Feminino , Humanos , Cariotipagem , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA