RESUMO
The intervertebral disk degeneration (IDD) and its associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. IDD progresses with age, leading to spondylosis, spondylarthrosis, intervertebral disk herniation, and spinal stenosis. The purpose of this review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines in IDD and to appreciate the prognostic value of cytokine imbalance as its biomarker. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to the maintenance or alteration of cytokine balance may be a new key to unlocking the mystery of IDD development and new therapeutic strategies for the treatment of IDD in the setting of acute and chronic inflammation. The presented data support the hypothesis that cytokine imbalance is one of the most important biomarkers of IDD.
Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/tratamento farmacológico , Citocinas/uso terapêutico , Deslocamento do Disco Intervertebral/tratamento farmacológico , Biomarcadores , Anti-Inflamatórios/uso terapêuticoRESUMO
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/genética , Citocinas , Deslocamento do Disco Intervertebral/tratamento farmacológico , Anti-Inflamatórios , InflamaçãoRESUMO
An important mechanism for the development of intervertebral disc degeneration (IDD) is an imbalance between anti-inflammatory and pro-inflammatory cytokines. Therapeutic and non-therapeutic approaches for cytokine imbalance correction in IDD either do not give the expected result, or give a short period of time. This explains the relevance of high-tech medical care, which is part of specialized care and includes the use of new resource-intensive methods of treatment with proven effectiveness. The aim of the review is to update knowledge about new high-tech methods based on cytokine imbalance correction in IDD. It demonstrates promise of new approaches to IDD management in patients resistant to previously used therapies, including: cell therapy (stem cell implantation, implantation of autologous cultured cells, and tissue engineering); genetic technologies (gene modifications, microRNA, and molecular inducers of IDD); technologies for influencing the inflammatory cascade in intervertebral discs mediated by abnormal activation of inflammasomes; senolytics; exosomal therapy; and other factors (hypoxia-induced factors; lysyl oxidase; corticostatin; etc.).
Assuntos
Degeneração do Disco Intervertebral , MicroRNAs , Humanos , Degeneração do Disco Intervertebral/terapia , Citocinas , MicroRNAs/genética , Terapia Baseada em Transplante de Células e Tecidos , Clonagem MolecularRESUMO
Chronic pain syndromes are an important medical problem generated by various molecular, genetic, and pathophysiologic mechanisms. Back pain, neuropathic pain, and posttraumatic pain are the most important pathological processes associated with chronic pain in adults. Standard approaches to the treatment of them do not solve the problem of pain chronicity. This is the reason for the search for new personalized strategies for the prevention and treatment of chronic pain. The nitric oxide (NO) system can play one of the key roles in the development of peripheral pain and its chronicity. The purpose of the study is to review publications devoted to changes in the NO system in patients with peripheral chronical pain syndromes. We have carried out a search for the articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier, and Google Scholar databases. The search was carried out using keywords and their combinations. The role of NO and NO synthases (NOS) isoforms in peripheral pain development and chronicity was demonstrated primarily from animal models to humans. The most studied is the neuronal NOS (nNOS). The role of inducible NOS (iNOS) and endothelial NOS (eNOS) is still under investigation. Associative genetic studies have shown that single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes encoding nNOS, iNOS, and eNOS may be associated with acute and chronic peripheral pain. Prospects for the use of NOS inhibitors to modulate the effect of drugs used to treat peripheral pain syndrome are discussed. Associative genetic studies of SNVs NOS1, NOS2, and NOS3 genes are important for understanding genetic predictors of peripheral pain chronicity and development of new personalized pharmacotherapy strategies.
Assuntos
Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Manejo da Dor , Dor/metabolismo , Medicina de Precisão , Animais , Terapia Combinada , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Dor/etiologia , Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodosRESUMO
The safety of the use of psychotropic drugs, widely used in neurological and psychiatric practice, is an urgent problem in personalized medicine. This narrative review demonstrated the variability in allelic frequencies of low-functioning and non-functional single nucleotide variants in genes encoding key isoenzymes of valproic acid P-oxidation in the liver across different ethnic/racial groups. The sensitivity and specificity of pharmacogenetic testing panels for predicting the rate of metabolism of valproic acid by P-oxidation can be increased by prioritizing the inclusion of the most common risk allele characteristic of a particular population (country).
RESUMO
Chiari 1 Malformation (CM1) is classically defined as a caudal displacement of the cerebellar tonsils through the foramen magnum into the spinal cord. Modern imaging techniques and experimental studies disclose a different etiology for the development of CM1, but the main etiology factor is a structural defect in the skull as a deformity or partial reduction, which push down the lower part of the brain and cause the cerebellum to compress into the spinal canal. CM1 is classified as a rare disease. CM1 can present with a wide variety of symptoms, also non-specific, with consequent controversies on diagnosis and surgical decision-making, particularly in asymptomatic or minimally symptomatic. Other disorders, such as syringomyelia (Syr), hydrocephalus, and craniocervical instability can be associated at the time of the diagnosis or appear secondarily. Therefore, CM1-related Syr is defined as a single or multiple fluid-filled cavities within the spinal cord and/or the bulb. A rare CM1-related disorder is syndrome of lateral amyotrophic sclerosis (ALS mimic syndrome). We present a unique clinical case of ALS mimic syndrome in a young man with CM1 and a huge singular syringomyelic cyst with a length from segment C2 to Th12. At the same time, the clinical picture showed upper hypotonic-atrophic paraparesis in the absence of motor disorders in the lower extremities. Interestingly, this patient did not have a disorder of superficial and deep types of sensitivity. This made it difficult to diagnose CM1. For a long time, the patient's symptoms were regarded as a manifestation of ALS, as an independent neurological disease, and not as a related disorder of CM1. Surgical treatment for CM1 was not effective, but it allowed to stabilize the course of CM1-related ALS mimic syndrome over the next two years.
RESUMO
Inducible nitric oxide (NO) synthase (iNOS), encoded by the NOS2 gene, promotes the generation of high levels of NO to combat harmful environmental influences in a wide range of cells. iNOS can cause adverse effects, such as falling blood pressure, if overexpressed. Thus, according to some data, this enzyme is an important precursor of arterial hypertension (AH) and tension-type headache (TTH), which are the most common multifactorial diseases in adults. The purpose of this study was to investigate the association of rs2779249 (chr17:26128581 C>A) and rs2297518 (chr17: chr17:27769571 G>A) of the NOS2 gene with TTH and AH overlap syndrome (OS) in Caucasians in Eastern Siberia. The sample size was 91 participants: the first group-30 patients with OS; the second group-30 patients AH; and the third group-31 healthy volunteers. RT-PCR was used for the determination of alleles and genotypes of the SNPs rs2779249 and rs2297518 of the NOS2 gene in all groups of participants. We showed that the frequency of allele A was significantly higher among patients with AH compared with healthy volunteers (p-value < 0.05). The frequency of the heterozygous genotype CA of rs2779249 was higher in the first group vs. the control (p-value = 0.03), and in the second group vs. the control (p-value = 0.045). The frequency of the heterozygous genotype GA of rs2297518 was higher in the first group vs. the control (p-value = 0.035), and in the second group vs. the control (p-value = 0.001). The allele A of rs2779249 was associated with OS (OR = 3.17 [95% CI: 1.31-7.67], p-value = 0.009) and AH (OR = 2.94 [95% CI: 1.21-7.15], p-value = 0.015) risks compared with the control. The minor allele A of rs2297518 was associated with OS (OR = 4.0 [95% CI: 0.96-16.61], p-value = 0.035) and AH (OR = 8.17 [95% CI: 2.03-32.79], p-value = 0.001) risks compared with the control. Therefore, our pilot study demonstrated that the SNPs rs2779249 and rs229718 of the NOS2 gene could be promising genetic biomarkers for this OS risk in Caucasians from Eastern Siberia.
Assuntos
Doenças Autoimunes , Hipertensão , Cefaleia do Tipo Tensional , Adulto , Humanos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Projetos Piloto , Sibéria , Hipertensão/genética , Óxido Nítrico Sintase Tipo II/genéticaRESUMO
An elite athlete's status is associated with a multifactorial phenotype depending on many environmental and genetic factors. Of course, the peculiarities of the structure and function of skeletal muscles are among the most important characteristics in the context of athletic performance. PURPOSE: To study the associations of SNV rs1815739 (C577T or R577X) allelic variants and genotypes of the ACTN3 gene with qualification and competitive distance in Caucasian athletes of the Southern Urals. METHODS: A total of 126 people of European origin who lived in the Southern Urals region took part in this study. The first group included 76 cyclical sports athletes (speed skating, running disciplines in track-and-field): SD (short distances) subgroup-40 sprinters (mean 22.1 ± 2.4 y.o.); LD (long distances) subgroup-36 stayer athletes (mean 22.6 ± 2.7 y.o.). The control group consisted of 50 healthy nonathletes (mean 21.4 ± 2.7 y.o.). We used the Step One Real-Time PCR System (Applied Biosystems, USA) device for real-time polymerase chain reaction. RESULTS: The frequency of the major allele R was significantly higher in the SD subgroup compared to the control subgroup (80% vs. 64%; p-value = 0.04). However, we did not find any significant differences in the frequency of the R allele between the athletes of the SD subgroup and the LD subgroup (80% vs. 59.7%, respectively; p-value > 0.05). The frequency of the X allele was lower in the SD subgroup compared to the LD subgroup (20% vs. 40.3%; p-value = 0.03). The frequency of homozygous genotype RR was higher in the SD subgroup compared to the control group (60.0% vs. 34%; p-value = 0.04). The R allele was associated with competitive distance in the SD group athletes compared to those of the control group (OR = 2.45 (95% CI: 1.02-5.87)). The X allele was associated with competitive distance in the LD subgroup compared to the SD subgroup (OR = 2.7 (95% CI: 1.09-6.68)). CONCLUSIONS: Multiplicative and additive inheritance models demonstrated that high athletic performance for sprinters was associated with the homozygous dominant genotype 577RR in cyclical sports athletes of Caucasian origin in the Southern Urals.
Assuntos
Desempenho Atlético , Corrida , Humanos , Atletas , Reação em Cadeia da Polimerase em Tempo Real , Nucleotídeos , Actinina/genéticaRESUMO
Carpal tunnel syndrome (CTS) is the most frequent entrapment neuropathy. CTS therapy includes wrist immobilization, kinesiotherapy, non-steroidal anti-inflammatory drugs, carpal tunnel steroid injection, acupuncture, and physical therapy. Carpal tunnel decompression surgery (CTDS) is recommended after failure of conservative therapy. In many cases, neurological disorders continue despite CTDS. The aim of this study was to investigate the efficiency of direct transcutaneous electroneurostimulation (TENS) of the median nerve in the regression of residual neurological symptoms after CTDS. Material and Methods: 60 patients aged 28-62 years with persisting sensory and motor disorders after CTDS were studied; 15 patients received sham stimulation with a duration 30 min.; 15 patients received high-frequency low-amplitude TENS (HF TENS) with a duration 30 min; 15 patients received low-frequency high-amplitude TENS (LF TENS) with a duration 30 min; and 15 patients received a co-administration of HF TENS (with a duration of15 min) and LF TENS (with a duration of 15 min). Results: Our research showed that TENS significantly decreased the pain syndrome, sensory disorders, and motor deficits in the patients after CTDS. Predominantly, negative and positive sensory symptoms and the pain syndrome improved after the HF TENS course. Motor deficits, reduction of fine motor skill performance, electromyography changes, and affective responses to chronic pain syndrome regressed significantly after the LF TENS course. Co-administration of HF TENS and LF TENS was significantly more effective than use of sham stimulation, HF TENS, or LF TENS in patients with residual neurological symptoms after CTDS.
RESUMO
Valproic acid (VPA) and its salts (sodium calcium magnesium and orotic) are psychotropic drugs that are widely used in neurology and psychiatry. The long-term use of VPA increases the risk of developing adverse drug reactions (ADRs), among which metabolic syndrome (MetS) plays a special role. MetS belongs to a cluster of metabolic conditions such as abdominal obesity, high blood pressure, high blood glucose, high serum triglycerides, and low serum high-density lipoprotein. Valproate-induced MetS (VPA-MetS) is a common ADR that needs an updated multidisciplinary approach to its prevention and diagnosis. In this review, we consider the results of studies of blood (serum and plasma) and the urinary biomarkers of VPA-MetS. These metabolic biomarkers may provide the key to the development of a new multidisciplinary personalized strategy for the prevention and diagnosis of VPA-MetS in patients with neurological diseases, psychiatric disorders, and addiction diseases.
RESUMO
All biological processes associated with high sports performance, including energy metabolism, are influenced by genetics. DNA sequence variations in such genes, single nucleotide variants (SNVs), could confer genetic advantages that can be exploited to achieve optimal athletic performance. Ignorance of these features can create genetic "barriers" that prevent professional athletes from pursuing a career in sports. Predictive Genomic DNA Profiling reveals single nucleotide variations (SNV) that may be associated with better suitability for endurance, strength and speed sports. (1) Background: To conduct a research on candidate genes associated with regulation of skeletal muscle energy metabolism among athletes. (2) Methods: We have searched for articles in SCOPUS, Web of Science, Google Scholar, Clinical keys, PubMed, e-LIBRARY databases for the period of 2010-2020 using keywords and keywords combinations; (4) Conclusions: Identification of genetic markers associated with the regulation of energy metabolism in skeletal muscles can help sports physicians and coaches develop personalized strategies for selecting children, teenagers and young adults for endurance, strength and speed sports (such as jogging, middle or long distance runs). However, the multifactorial aspect of sport performances, including impact of genetics, epigenetics, environment (training and etc.), is important for personalized strategies for selecting of athletes. This approach could improve sports performance and reduce the risk of sports injuries to the musculoskeletal system.
Assuntos
Desempenho Atlético , Marcadores Genéticos , Músculo Esquelético/química , Atletas , Metabolismo Energético , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único , Medicina de PrecisãoRESUMO
(1) Background: The purpose of this review is to analyze domestic and foreign studies on the role of collagen-encoding genes polymorphism in the development of intervertebral discs (IVDs) degeneration in humans. (2) Methods: We have carried out a search for full-text articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier and Google Scholar databases. The search was carried out using keywords and their combinations. The search depth was 5 years (2016-2021). In addition, this review includes articles of historical interest. Despite an extensive search, it is possible that we might have missed some studies published in recent years. (3) Results: According to the data of genome-wide and associative genetic studies, the following candidate genes that play a role in the biology of IVDs and the genetic basis of the processes of collagen degeneration of the annulus fibrosus and nucleus pulposus of IVDs in humans are of the greatest interest to researchers: COL1A1, COL2A1, COL9A2, COL9A3, COL11A1 and COL11A2. In addition, the role of genes COL1A2, COL9A1 and others is being actively studied. (4) Conclusions: In our review, we summarized and systematized the available information on the role of genetic factors in IVD collagen fibers turnover and also focused on the functions of different types of collagen present in the IVD. Understanding the etiology of impaired collagen formation can allow doctors to prescribe pathogenetically-based treatment, achieving the most effective results.