Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chem Rev ; 118(20): 10294-10348, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30234291

RESUMO

Accurate and precise drug delivery is the key to successful therapy. Monoclonal antibodies, which can transport therapeutic payload to cells expressing specific markers, have paved the way for targeted drug delivery and currently show tremendous clinical success. However, in those abundant cases, when a disease cannot be characterized by a single specific marker, more sophisticated drug delivery systems are required. To enhance targeting accuracy, diverse smart materials have been proposed that can also react to stimuli like variations of pH, temperature, magnetic field, etc. Furthermore, over the past few years a new category of smart materials has emerged, which can not only respond to virtually any biochemical or physical stimulus but also simultaneously analyze several cues and, moreover, can be programmed to use Boolean logic for such analysis. These advanced biocomputing agents have the potential to become a basis for future nanorobotic devices that could overcome some of the grand challenges of modern biomedicine. Here, with a brief introduction to the multidisciplinary field of biomolecular computing, we will review the concepts of nanomaterials with built-in biocomputing capabilities, which can be potentially used for drug delivery and other theranostic applications.


Assuntos
Lógica , Nanoestruturas/química , Nanomedicina Teranóstica , Tecnologia Biomédica , Sistemas de Liberação de Medicamentos
2.
Biochim Biophys Acta Gen Subj ; 1861(6): 1530-1544, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28130158

RESUMO

BACKGROUND: Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots. It is quite obscure what these devices are going to look like but they will be more or less based on today's achievements in nanobiotechnology. SCOPE OF REVIEW: The present Review is an attempt to systematize highly diverse nanomaterials, which may potentially serve as modules for theranostic nanorobotics, e.g., nanomotors, sensing units, and payload carriers. MAJOR CONCLUSIONS: Biocomputing-based sensing, externally actuated or chemically "fueled" autonomous movement, swarm inter-agent communication behavior are just a few inspiring examples that nanobiotechnology can offer today for construction of truly intelligent drug delivery systems. GENERAL SIGNIFICANCE: The progress of smart nanomaterials toward fully autonomous drug delivery nanorobots is an exciting prospect for disease treatment. Synergistic combination of the available approaches and their further development may produce intelligent drugs of unmatched functionality.


Assuntos
Técnicas Biossensoriais/instrumentação , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Nanoestruturas/química , Preparações Farmacêuticas/química , Nanomedicina Teranóstica/instrumentação , Animais , Portadores de Fármacos/classificação , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanoestruturas/classificação , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/classificação , Terminologia como Assunto , Nanomedicina Teranóstica/métodos
3.
Inorg Chem ; 53(14): 7146-53, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24992359

RESUMO

The structural characterization of a (13)CO-labeled Ir(I) complex bearing an P,N-donor ligand (1-[2-(diphenylphosphino)ethyl]pyrazole), [Ir(PyP)((13)CO)Cl] is demonstrated using a series of tailored solid-state NMR techniques based on ultrafast (60 kHz) Magic Angle Spinning (MAS), which facilitates correlations with narrow proton line-widths. Our 1D (1)H MAS and 2D (13)C and (31)P CP-MAS NMR spectra provided structural information similar to that obtained using NMR spectroscopy in solution. We employed high-resolution 2D solid-state correlation spectroscopy ((1)H-(13)C HETCOR, (1)H-(31)P correlation) to characterize the networks of dipolar couplings between protons and carbon/phosphorus. (1)H-(1)H SQ-SQ correlation spectra showed the dipolar contacts between all protons in a similar fashion to its solution counterpart, NOESY. The use of the (1)H single quantum/double quantum experiments made it possible to observe the dipolar-coupling contacts between immediately adjacent protons. Additionally, internuclear (13)CO-(31)P distance measurements were performed using REDOR. The combination of all of these techniques made it possible to obtain comprehensive structural information on the molecule [Ir(PyP)((13)CO)Cl] in the solid state, which is in excellent agreement with the single crystal X-ray structure of the complex, and demonstrates the enormous value of ultrafast MAS NMR techniques for a broad range of future applications.

4.
J Am Chem Soc ; 135(44): 16429-37, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24087972

RESUMO

A series of N,N-donor ligands (bis(pyrazol-1-yl)methane (bpm), bis(N-methylimidazol-2-yl)methane (bim), 1-(phenylmethyl)-4-(1H-pyrazol-1-yl methyl)-1H-1,2,3-triazole (PyT)), and one N,P-donor ligand precursor (1-(3,5-dimethylpyrazol-1-yl)(2-bromoethane) (dmPyBr)) were synthesized and functionalized with aniline. Diazotization of the aniline into an aryl diazonium, using nitrous acid in aqueous conditions, was performed in situ such that the ligands could be reductively adsorbed onto glassy carbon electrode surfaces. The N,N-donor ligands (bpm, bim, PyT) were immobilized in a single step, while several steps were required to immobilize the N,P-donor ligand (dmPyP) to prevent oxidation of the phosphine group. The complexation of the anchored ligands with the metal complex precursor ([Rh(CO)2(µ-Cl)]2) led to the formation of anchored Rh(I) complexes with each of the ligands (bpm, bim, PyT, dmPyP). X-ray photoelectron spectroscopy (XPS) confirmed the formation of the anchored ligands as well as the anchored complexes. The surface coverage of functionalized electrodes was estimated by means of cyclic voltammetry, and the nature of the coverage was close to being a monolayer for each immobilized complex. The anchored Rh(I) complexes were active as catalysts for the intramolecular hydroamination of 4-pentyn-1-amine to form 2-methyl-1-pyrroline.

5.
Biosens Bioelectron ; 88: 3-8, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27665167

RESUMO

Biomolecule-driven assembly of nanoparticles is a powerful and convenient approach for development of advanced nanosensors and theranostic agents with diverse "on-demand" composition and functionality. While a lot of research is being devoted to fabrication of such agents, the development of non-invasive analytical tools to monitor self-assembly/disassembly processes in real-time substantially lags behind. Here, we demonstrate the capabilities of localized surface plasmon resonance (SPR) phenomenon to study non-covalent interactions not just between plasmonic particles, but between gold nanoparticles (AuNP) and non-plasmonic ones. We show its potential to investigate assembly and performance of a novel type of advanced smart materials, namely, biocomputing agents. These agents, self-assembled from nanoparticles via biomolecular interfaces such as proteins, DNA, etc., can analyze presence of biomolecular inputs according to Boolean logic and undergo the input-induced disassembly in order to implement the proper output action. Using UV-Vis spectroscopy to monitor the assembly/disassembly processes of the basic YES-gate structure that consists of a polymer core particle with a multitude of associated gold nanoparticles, we found that the structure transformations are well-characterized by pronounced difference in SPR spectral band position (shifting up to 50nm). This SPR shift correlates remarkably well with biochemical estimation of the assembly/disassembly extent, and can provide valuable real-time kinetic analysis. We believe that the obtained data can be easily extended to other non-plasmonic nanoparticle systems having similar chemical and colloidal properties. SPR method can become a valuable addition to analytical toolbox for characterization of self-assembled smart nanosystems used in biosensing, imaging, controlled release and other applications.


Assuntos
Computadores Moleculares , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Animais , Bovinos , Cloranfenicol/química , Proteínas Imobilizadas/química , Cinética , Nanopartículas Metálicas/ultraestrutura , Soroalbumina Bovina/química , Propriedades de Superfície
6.
Dalton Trans ; 44(17): 7917-26, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25823592

RESUMO

Pure carbon black (CB) was covalently attached to a bidentate nitrogen coordination motif with a carbon-carbon bond by spontaneous reaction with an in situ generated ligand precursor. The functionalized support was treated with [Rh(CO)2(µ-Cl)]2 to form a heterogeneous carbon-based support covalently linked to a well defined Rh(i) coordination complex. The hybrid material was characterized using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). The CB-supported Rh(i) catalyst was active in both hydroamination and dihydroalkoxylation reactions achieving turnover numbers approaching 1000 and was readily recycled. The selectivity of an intramolecular dihydroalkoxylation reaction was significantly improved by covalently anchoring the catalyst to the CB surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA