Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 459-462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191936

RESUMO

A new class of extragalactic astronomical sources discovered in 2021, named odd radio circles (ORCs)1, are large rings of faint, diffuse radio continuum emission spanning approximately 1 arcminute on the sky. Galaxies at the centres of several ORCs have photometric redshifts of z ≃ 0.3-0.6, implying physical scales of several 100 kpc in diameter for the radio emission, the origin of which is unknown. Here we report spectroscopic data on an ORC including strong [O II] emission tracing ionized gas in the central galaxy of ORC4 at z = 0.4512. The physical extent of the [O II] emission is approximately 40 kpc in diameter, larger than expected for a typical early-type galaxy2 but an order of magnitude smaller than the large-scale radio continuum emission. We detect an approximately 200 km s-1 velocity gradient across the [O II] nebula, as well as a high velocity dispersion of approximately 180 km s-1. The [O II] equivalent width (approximately 50 Å) is extremely high for a quiescent galaxy. The morphology, kinematics and strength of the [O II] emission are consistent with the infall of shock ionized gas near the galaxy, following a larger, outward-moving shock. Both the extended optical and radio emission, although observed on very different scales, may therefore result from the same dramatic event.

2.
Nat Commun ; 7: 13269, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759033

RESUMO

Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA