Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2304511121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194453

RESUMO

Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses. We used pathway-selective optogenetics in rhesus macaques performing a spatial attention task to inhibit the direct input from the FEF to area MT, an area along the dorsal visual pathway specialized for the processing of visual motion information. Our results show that the optogenetic inhibition of the FEF input specifically reduces attentional modulation in MT by about a third without affecting the neurons' sensory response component. We find that the direct FEF-to-MT pathway contributes to both the enhanced processing of target stimuli and the suppression of distractors. The FEF, thus, selectively modulates firing rates in visual area MT, and it does so via its direct axonal projections.


Assuntos
Optogenética , Córtex Visual , Animais , Macaca mulatta , Axônios , Encéfalo
2.
Proc Natl Acad Sci U S A ; 117(39): 24022-24031, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32817435

RESUMO

The recently developed new genome-editing technologies, such as the CRISPR/Cas system, have opened the door for generating genetically modified nonhuman primate (NHP) models for basic neuroscience and brain disorders research. The complex circuit formation and experience-dependent refinement of the human brain are very difficult to model in vitro, and thus require use of in vivo whole-animal models. For many neurodevelopmental and psychiatric disorders, abnormal circuit formation and refinement might be at the center of their pathophysiology. Importantly, many of the critical circuits and regional cell populations implicated in higher human cognitive function and in many psychiatric disorders are not present in lower mammalian brains, while these analogous areas are replicated in NHP brains. Indeed, neuropsychiatric disorders represent a tremendous health and economic burden globally. The emerging field of genetically modified NHP models has the potential to transform our study of higher brain function and dramatically facilitate the development of effective treatment for human brain disorders. In this paper, we discuss the importance of developing such models, the infrastructure and training needed to maximize the impact of such models, and ethical standards required for using these models.


Assuntos
Experimentação Animal/ética , Modelos Animais de Doenças , Transtornos Mentais/genética , Doenças do Sistema Nervoso/genética , Primatas/genética , Animais , Transtornos Mentais/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Neurociências/ética , Neurociências/métodos , Primatas/fisiologia
3.
Eur Surg Res ; 64(1): 37-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34915502

RESUMO

Understanding the impact routine research and laboratory procedures have on animals is crucial to improving their well-being and to the success and reproducibility of the research they are involved in. Cognitive measures of welfare offer insight into animals' internal psychological state, but require validation. Attention bias - the tendency to attend to one type of information over another - is a cognitive phenomenon documented in humans and animals that is known to be modulated by affective state (i.e., emotions). Hence, changes in attention bias may offer researchers a deeper perspective of their animals' psychological well-being. The dot-probe task is an established method for quantifying attention bias in humans (by measuring reaction time to a dot-probe replacing pairs of stimuli), but has yet to be validated in animals. We developed a dot-probe task for long-tailed macaques (Macaca fascicularis) to determine if the task can detect changes in attention bias following anesthesia, a context known to modulate attention and trigger physiological arousal in macaques. Our task included the following features: stimulus pairs of threatening and neutral facial expressions of conspecifics and their scrambled counterparts, two stimuli durations (100 and 1,000 ms), and counterbalancing of the dot-probe's position on the touchscreen (left and right) and location relative to the threatening stimulus. We tested 8 group-housed adult females on different days relative to being anesthetized (baseline and 1-, 3-, 7-, and 14-days after). At baseline, monkeys were vigilant to threatening content when stimulus pairs were presented for 100 ms, but not 1,000 ms. On the day immediately following anesthesia, we found evidence that attention bias changed to an avoidance of threatening content. Attention bias returned to threat vigilance by the third day postanesthesia and remained so up to the last day of testing (14-days after anesthesia). We also found that attention bias was independent of the type of stimuli pair (i.e., whole face vs. scrambled counterparts), suggesting that the scrambled stimuli retained aspects of the original stimuli. Nevertheless, whole faces were more salient to the monkeys as responses to these trials were generally slower than to scrambled stimulus pairs. Overall, our study suggests it is feasible to detect changes in attention bias following anesthesia using the dot-probe task in nonhuman primates. Our results also reveal important aspects of stimulus preparation and experimental design.


Assuntos
Anestesia , Bem-Estar Psicológico , Animais , Adulto , Humanos , Feminino , Macaca fascicularis , Reprodutibilidade dos Testes , Emoções/fisiologia
4.
BMC Biol ; 20(1): 220, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199136

RESUMO

BACKGROUND: Feature-based attention prioritizes the processing of the attended feature while strongly suppressing the processing of nearby ones. This creates a non-linearity or "attentional suppressive surround" predicted by the Selective Tuning model of visual attention. However, previously reported effects of feature-based attention on neuronal responses are linear, e.g., feature-similarity gain. Here, we investigated this apparent contradiction by neurophysiological and psychophysical approaches. RESULTS: Responses of motion direction-selective neurons in area MT/MST of monkeys were recorded during a motion task. When attention was allocated to a stimulus moving in the neurons' preferred direction, response tuning curves showed its minimum for directions 60-90° away from the preferred direction, an attentional suppressive surround. This effect was modeled via the interaction of two Gaussian fields representing excitatory narrowly tuned and inhibitory widely tuned inputs into a neuron, with feature-based attention predominantly increasing the gain of inhibitory inputs. We further showed using a motion repulsion paradigm in humans that feature-based attention produces a similar non-linearity on motion discrimination performance. CONCLUSIONS: Our results link the gain modulation of neuronal inputs and tuning curves examined through the feature-similarity gain lens to the attentional impact on neural population responses predicted by the Selective Tuning model, providing a unified framework for the documented effects of feature-based attention on neuronal responses and behavior.


Assuntos
Percepção de Movimento , Humanos , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos , Lobo Temporal/fisiologia
5.
PLoS Biol ; 17(8): e3000387, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31386656

RESUMO

Attending to visual stimuli enhances the gain of those neurons in primate visual cortex that preferentially respond to the matching locations and features (on-target gain). Although this is well suited to enhance the neuronal representation of attended stimuli, it is nonoptimal under difficult discrimination conditions, as in the presence of similar distractors. In such cases, directing attention to neighboring neuronal populations (off-target gain) has been shown to be the most efficient strategy, but although such a strategic deployment of attention has been shown behaviorally, its underlying neural mechanisms are unknown. Here, we investigated how attention affects the population responses of neurons in the middle temporal (MT) visual area of rhesus monkeys to bidirectional movement inside the neurons' receptive field (RF). The monkeys were trained to focus their attention onto the fixation spot or to detect a direction or speed change in one of the motion directions (the "target"), ignoring the distractor motion. Population activity profiles were determined by systematically varying the patterns' directions while maintaining a constant angle between them. As expected, the response profiles show a peak for each of the 2 motion directions. Switching spatial attention from the fixation spot into the RF enhanced the peak representing the attended stimulus and suppressed the distractor representation. Importantly, the population data show a direction-dependent attentional modulation that does not peak at the target feature but rather along the slopes of the activity profile representing the target direction. Our results show that attentional gains are strategically deployed to optimize the discriminability of target stimuli, in line with an optimal gain mechanism proposed by Navalpakkam and Itti.


Assuntos
Atenção/fisiologia , Percepção de Movimento/fisiologia , Córtex Visual/metabolismo , Potenciais de Ação/fisiologia , Animais , Macaca mulatta/fisiologia , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Estimulação Luminosa/métodos , Primatas/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia
6.
Proc Natl Acad Sci U S A ; 116(25): 12506-12515, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31147468

RESUMO

Efficient transfer of sensory information to higher (motor or associative) areas in primate visual cortical areas is crucial for transforming sensory input into behavioral actions. Dynamically increasing the level of coordination between single neurons has been suggested as an important contributor to this efficiency. We propose that differences between the functional coordination in different visual pathways might be used to unambiguously identify the source of input to the higher areas, ensuring a proper routing of the information flow. Here we determined the level of coordination between neurons in area MT in macaque visual cortex in a visual attention task via the strength of synchronization between the neurons' spike timing relative to the phase of oscillatory activities in local field potentials. In contrast to reports on the ventral visual pathway, we observed the synchrony of spikes only in the range of high gamma (180 to 220 Hz), rather than gamma (40 to 70 Hz) (as reported previously) to predict the animal's reaction speed. This supports a mechanistic role of the phase of high-gamma oscillatory activity in dynamically modulating the efficiency of neuronal information transfer. In addition, for inputs to higher cortical areas converging from the dorsal and ventral pathway, the distinct frequency bands of these inputs can be leveraged to preserve the identity of the input source. In this way source-specific oscillatory activity in primate cortex can serve to establish and maintain "functionally labeled lines" for dynamically adjusting cortical information transfer and multiplexing converging sensory signals.


Assuntos
Sincronização Cortical , Macaca/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Masculino , Vias Visuais/fisiologia
7.
BMC Biol ; 19(1): 49, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726757

RESUMO

BACKGROUND: Attentional modulation in the visual cortex of primates is characterized by multiplicative changes of sensory responses with changes in the attentional state of the animal. The cholinergic system has been linked to such gain changes in V1. Here, we aim to determine if a similar link exists in macaque area MT. While rhesus monkeys performed a top-down spatial attention task, we locally injected a cholinergic agonist or antagonist and recorded single-cell activity. RESULTS: Although we confirmed cholinergic influences on sensory responses, there was no additional cholinergic effect on the attentional gain changes. Neither a muscarinic blockage nor a local increase in acetylcholine led to a significant change in the magnitude of spatial attention effects on firing rates. CONCLUSIONS: This suggests that the cellular mechanisms of attentional modulation in the extrastriate cortex cannot be directly inferred from those in the primary visual cortex.


Assuntos
Atenção/fisiologia , Agonistas Colinérgicos/farmacologia , Antagonistas Colinérgicos/farmacologia , Macaca mulatta/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Acetilcolina/farmacologia , Animais , Atenção/efeitos dos fármacos , Masculino , Mecamilamina/farmacologia , Escopolamina/farmacologia , Córtex Visual/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos
8.
Infancy ; 27(2): 433-458, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981647

RESUMO

Theories of visual attention suggest a cascading development of subfunctions such as alertness, spatial orientation, attention to object features, and endogenous control. Here, we aimed to track infants' visual developmental steps from a primarily exogenously to more endogenously controlled processing style during their first months of life. In this repeated measures study, 51 infants participated in seven fortnightly assessments at postterm ages of 4-16 weeks. Infants were presented with the same set of static and dynamic paired comparison stimuli in each assessment. Visual behavior was evaluated by a newly introduced scoring scheme. Our results confirmed the suggested visual developmental hierarchy and clearly demonstrated the suitability of our scoring scheme for documenting developmental changes in visual attention during early infancy. Besides the general ontogenetic course of development, we also discuss intra- and interindividual differences which may affect single assessments, and highlight the importance of repeated measurements for reliable evaluation of developmental changes.


Assuntos
Desenvolvimento Infantil , Resolução de Problemas , Humanos , Lactente , Recém-Nascido
9.
Neuroimage ; 229: 117757, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33460801

RESUMO

We effortlessly perceive visual objects as unified entities, despite the preferential encoding of their various visual features in separate cortical areas. A 'binding' process is assumed to be required for creating this unified percept, but the underlying neural mechanism and specific brain areas are poorly understood. We investigated 'feature-binding' across two feature dimensions, using a novel stimulus configuration, designed to disambiguate whether a given combination of color and motion direction is perceived as bound or unbound. In the "bound" condition, two behaviorally relevant features (color and motion) belong to the same object, while in the "unbound" condition they belong to different objects. We recorded local field potentials from the lateral prefrontal cortex (lPFC) in macaque monkeys that actively monitored the different stimulus configurations. Our data show a neural representation of visual feature binding especially in the 4-12 Hz frequency band and a transmission of binding information between different lPFC neural subpopulations. This information is linked to the animal's reaction time, suggesting a behavioral relevance of the binding information. Together, our results document the involvement of the prefrontal cortex, targeted by the dorsal and ventral visual streams, in binding visual features from different dimensions, in a process that includes a dynamic modulation of low frequency inter-regional communication.


Assuntos
Percepção de Cores/fisiologia , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia , Animais , Macaca , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Percepção Visual/fisiologia
10.
J Neurophysiol ; 125(5): 1851-1882, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33656951

RESUMO

Primate visual cortex consists of dozens of distinct brain areas, each providing a highly specialized component to the sophisticated task of encoding the incoming sensory information and creating a representation of our visual environment that underlies our perception and action. One such area is the medial superior temporal cortex (MST), a motion-sensitive, direction-selective part of the primate visual cortex. It receives most of its input from the middle temporal (MT) area, but MST cells have larger receptive fields and respond to more complex motion patterns. The finding that MST cells are tuned for optic flow patterns has led to the suggestion that the area plays an important role in the perception of self-motion. This hypothesis has received further support from studies showing that some MST cells also respond selectively to vestibular cues. Furthermore, the area is part of a network that controls the planning and execution of smooth pursuit eye movements and its activity is modulated by cognitive factors, such as attention and working memory. This review of more than 90 studies focuses on providing clarity of the heterogeneous findings on MST in the macaque cortex and its putative homolog in the human cortex. From this analysis of the unique anatomical and functional position in the hierarchy of areas and processing steps in primate visual cortex, MST emerges as a gateway between perception, cognition, and action planning. Given this pivotal role, this area represents an ideal model system for the transition from sensation to cognition.


Assuntos
Cognição/fisiologia , Macaca/fisiologia , Percepção de Movimento/fisiologia , Sensação/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Animais , Humanos , Lobo Temporal/anatomia & histologia , Córtex Visual/anatomia & histologia
11.
PLoS Biol ; 14(2): e1002390, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26901857

RESUMO

We experience a visually stable world despite frequent retinal image displacements induced by eye, head, and body movements. The neural mechanisms underlying this remain unclear. One mechanism that may contribute is transsaccadic remapping, in which the responses of some neurons in various attentional, oculomotor, and visual brain areas appear to anticipate the consequences of saccades. The functional role of transsaccadic remapping is actively debated, and many of its key properties remain unknown. Here, recording from two monkeys trained to make a saccade while directing attention to one of two spatial locations, we show that neurons in the middle temporal area (MT), a key locus in the motion-processing pathway of humans and macaques, show a form of transsaccadic remapping called a memory trace. The memory trace in MT neurons is enhanced by the allocation of top-down spatial attention. Our data provide the first demonstration, to our knowledge, of the influence of top-down attention on the memory trace anywhere in the brain. We find evidence only for a small and transient effect of motion direction on the memory trace (and in only one of two monkeys), arguing against a role for MT in the theoretically critical yet empirically contentious phenomenon of spatiotopic feature-comparison and adaptation transfer across saccades. Our data support the hypothesis that transsaccadic remapping represents the shift of attentional pointers in a retinotopic map, so that relevant locations can be tracked and rapidly processed across saccades. Our results resolve important issues concerning the perisaccadic representation of visual stimuli in the dorsal stream and demonstrate a significant role for top-down attention in modulating this representation.


Assuntos
Atenção/fisiologia , Macaca mulatta/fisiologia , Movimentos Sacádicos , Memória Espacial/fisiologia , Lobo Temporal/fisiologia , Animais , Macaca mulatta/psicologia , Masculino , Percepção de Movimento , Neurônios/fisiologia
12.
BMC Biol ; 16(1): 86, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081912

RESUMO

BACKGROUND: The timing of action potentials ("spikes") of cortical neurons has been shown to be aligned to the phase of low-frequency (< 10 Hz) local field potentials (LFPs) in several cortical areas. However, across the areas, this alignment varies and the role of this spike-phase coupling (SPC) in cognitive functions is not well understood. RESULTS: Here, we propose a role in the coordination of neural activity by selective attention. After refining previous analytical methods for measuring SPC, we show that first, SPC is present along the dorsal processing pathway in macaque visual cortex (area MT); second, spikes occur in falling phases of the low-frequency LFP independent of the location of spatial attention; third, switching spatial attention into the receptive field (RF) of MT neurons decreases this coupling; and finally, the LFP phase causally influences the spikes. CONCLUSIONS: Here, we show that spikes are coupled to the phase of low-frequency LFP along the dorsal visual pathway. Our data suggest that attention harnesses this spike-LFP coupling to de-synchronize neurons and thereby enhance the neural representation of the attended stimuli.


Assuntos
Potenciais de Ação/fisiologia , Atenção , Potenciais Evocados Visuais/fisiologia , Macaca mulatta/fisiologia , Córtex Visual/fisiologia , Animais , Masculino , Neurônios/fisiologia , Vias Visuais/fisiologia
13.
Cereb Cortex ; 27(1): 83-91, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365773

RESUMO

Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms.


Assuntos
Atenção/fisiologia , Relógios Biológicos/fisiologia , Ondas Encefálicas/fisiologia , Rede Nervosa/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Animais , Macaca mulatta , Masculino
14.
Cereb Cortex ; 27(1): 279-293, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077512

RESUMO

Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free-viewing task. Our data-driven clustering analyses revealed distinct human and macaque clusters, indicating species-specific selection strategies. Yet, cross-species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on computational models of visual saliency indicate that such cross-species commonalities in free viewing are largely due to similar low-level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans.


Assuntos
Movimentos Oculares/fisiologia , Especificidade da Espécie , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Percepção Visual/fisiologia , Adulto Jovem
15.
Eur J Neurosci ; 46(12): 2844-2858, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29094412

RESUMO

Single-cell studies in macaques have shown that attending to one of two stimuli, positioned inside a visual neuron's receptive field (RF), modulates the neuron's response to reflect the features of the attended stimulus. Such a modulation has been described as a 'push-pull' effect relative to a reference response: a neuron's response increases when attention is directed to a preferred stimulus, and decreases when attention is directed to a non-preferred stimulus. It has been further suggested that the response increase when attending to a preferred stimulus is the predominant effect. Here, we show that the observed attentional modulation depends on the reference response. We recorded neuronal responses in motion processing area middle temporal (MT) of macaques to two moving random dot patterns positioned inside neurons' RF. One pattern always moved in the neuron's antipreferred direction (null pattern), while the other moved in one of 12 directions (tuning pattern). At the beginning of a trial, a cue indicated the location and direction of the target. The animal was required to release a lever when a change in the target direction occurred, and to ignore changes in the distracter. Relative to neurons' initial responses to the dual stimuli (when attention was less likely to modulate responses), attending to the tuning pattern did not significantly modulate responses over time. However, attending to the null pattern progressively decreased responses over time. These results were quantitatively described by filter and input gain models, characterising a predominant response suppression relative to a reference response, rather than response enhancement.


Assuntos
Atenção , Percepção de Movimento , Neurônios/fisiologia , Animais , Macaca mulatta , Masculino , Desempenho Psicomotor , Lobo Temporal/citologia , Lobo Temporal/fisiologia
16.
PLoS Comput Biol ; 12(12): e1005225, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27977679

RESUMO

Paying attention to a sensory feature improves its perception and impairs that of others. Recent work has shown that a Normalization Model of Attention (NMoA) can account for a wide range of physiological findings and the influence of different attentional manipulations on visual performance. A key prediction of the NMoA is that attention to a visual feature like an orientation or a motion direction will increase the response of neurons preferring the attended feature (response gain) rather than increase the sensory input strength of the attended stimulus (input gain). This effect of feature-based attention on neuronal responses should translate to similar patterns of improvement in behavioral performance, with psychometric functions showing response gain rather than input gain when attention is directed to the task-relevant feature. In contrast, we report here that when human subjects are cued to attend to one of two motion directions in a transparent motion display, attentional effects manifest as a combination of input and response gain. Further, the impact on input gain is greater when attention is directed towards a narrow range of motion directions than when it is directed towards a broad range. These results are captured by an extended NMoA, which either includes a stimulus-independent attentional contribution to normalization or utilizes direction-tuned normalization. The proposed extensions are consistent with the feature-similarity gain model of attention and the attentional modulation in extrastriate area MT, where neuronal responses are enhanced and suppressed by attention to preferred and non-preferred motion directions respectively.


Assuntos
Atenção/fisiologia , Modelos Neurológicos , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Neurônios/fisiologia , Estimulação Luminosa , Psicometria , Reprodutibilidade dos Testes , Adulto Jovem
17.
PeerJ ; 12: e17300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903880

RESUMO

One primary goal of laboratory animal welfare science is to provide a comprehensive severity assessment of the experimental and husbandry procedures or conditions these animals experience. The severity, or degree of suffering, of these conditions experienced by animals are typically scored based on anthropocentric assumptions. We propose to (a) assess an animal's subjective experience of condition severity, and (b) not only rank but scale different conditions in relation to one another using choice-based preference testing. The Choice-based Severity Scale (CSS) utilizes animals' relative preferences for different conditions, which are compared by how much reward is needed to outweigh the perceived severity of a given condition. Thus, this animal-centric approach provides a common scale for condition severity based on the animal's perspective. To assess and test the CSS concept, we offered three opportunistically selected male rhesus macaques (Macaca mulatta) choices between two conditions: performing a cognitive task in a typical neuroscience laboratory setup (laboratory condition) versus the monkey's home environment (cage condition). Our data show a shift in one individual's preference for the cage condition to the laboratory condition when we changed the type of reward provided in the task. Two additional monkeys strongly preferred the cage condition over the laboratory condition, irrespective of reward amount and type. We tested the CSS concept further by showing that monkeys' choices between tasks varying in trial duration can be influenced by the amount of reward provided. Altogether, the CSS concept is built upon laboratory animals' subjective experiences and has the potential to de-anthropomorphize severity assessments, refine experimental protocols, and provide a common framework to assess animal welfare across different domains.


Assuntos
Bem-Estar do Animal , Animais de Laboratório , Comportamento de Escolha , Macaca mulatta , Animais , Masculino , Comportamento de Escolha/fisiologia , Recompensa , Comportamento Animal/fisiologia
18.
PLoS One ; 19(5): e0301849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805512

RESUMO

Spatial accuracy in electrophysiological investigations is paramount, as precise localization and reliable access to specific brain regions help the advancement of our understanding of the brain's complex neural activity. Here, we introduce a novel, multi camera-based, frameless neuronavigation technique for precise, 3-dimensional electrode positioning in awake monkeys. The investigation of neural functions in awake primates often requires stable access to the brain with thin and delicate recording electrodes. This is usually realized by implanting a chronic recording chamber onto the skull of the animal that allows direct access to the dura. Most recording and positioning techniques utilize this implanted recording chamber as a holder of the microdrive or to hold a grid. This in turn reduces the degrees of freedom in positioning. To solve this problem, we require innovative, flexible, but precise tools for neuronal recordings. We instead mount the electrode microdrive above the animal on an arch, equipped with a series of translational and rotational micromanipulators, allowing movements in all axes. Here, the positioning is controlled by infrared cameras tracking the location of the microdrive and the monkey, allowing precise and flexible trajectories. To verify the accuracy of this technique, we created iron deposits in the tissue that could be detected by MRI. Our results demonstrate a remarkable precision with the confirmed physical location of these deposits averaging less than 0.5 mm from their planned position. Pilot electrophysiological recordings additionally demonstrate the accuracy and flexibility of this method. Our innovative approach could significantly enhance the accuracy and flexibility of neural recordings, potentially catalyzing further advancements in neuroscientific research.


Assuntos
Encéfalo , Eletrodos Implantados , Animais , Encéfalo/fisiologia , Neuronavegação/métodos , Neuronavegação/instrumentação , Macaca mulatta , Imageamento Tridimensional/métodos , Imageamento Tridimensional/instrumentação , Masculino , Vigília/fisiologia , Macaca
19.
Prog Neurobiol ; 233: 102563, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142770

RESUMO

Selective attention allows the brain to efficiently process the image projected onto the retina, selectively focusing neural processing resources on behaviorally relevant visual information. While previous studies have documented the crucial role of the action potential rate of single neurons in relaying such information, little is known about how the activity of single neurons relative to their neighboring network contributes to the efficient representation of attended stimuli and transmission of this information to downstream areas. Here, we show in the dorsal visual pathway of monkeys (medial superior temporal area) that neurons fire spikes preferentially at a specific phase of the ongoing population beta (∼20 Hz) oscillations of the surrounding local network. This preferred spiking phase shifts towards a later phase when monkeys selectively attend towards (rather than away from) the receptive field of the neuron. This shift of the locking phase is positively correlated with the speed at which animals report a visual change. Furthermore, our computational modeling suggests that neural networks can manipulate the preferred phase of coupling by imposing differential synaptic delays on postsynaptic potentials. This distinction between the locking phase of neurons activated by the spatially attended stimulus vs. that of neurons activated by the unattended stimulus, may enable the neural system to discriminate relevant from irrelevant sensory inputs and consequently filter out distracting stimuli information by aligning the spikes which convey relevant/irrelevant information to distinct phases linked to periods of better/worse perceptual sensitivity for higher cortices. This strategy may be used to reserve the narrow windows of highest perceptual efficacy to the processing of the most behaviorally relevant information, ensuring highly efficient responses to attended sensory events.


Assuntos
Neurônios , Córtex Visual , Animais , Neurônios/fisiologia , Encéfalo , Córtex Cerebral , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia
20.
PLoS One ; 19(1): e0295503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170693

RESUMO

Activist groups attack animal research and put scientists and their institutions under pressure, whereas scientists often remain silent. We report an interdisciplinary research project driven by a communication science perspective on how citizens respond to news reports about animal research (3 experiments, overall N = 765) and a German science-initiated information platform ("Tierversuche verstehen"; controlled user study, N = 100). Findings demonstrate that a critical journalist perspective within neutral, two-sided news reports (e.g., skeptical expert statements or images of suffering animals) does not affect citizen opinion strongly. Information media provided by scientific institutions seem to be welcomed even by citizens who hold critical prior attitudes. From these results, we develop a set of recommendations for future public communication of animal research that builds on best practices in organizational and crisis communication. These suggestions are intended to empower animal researchers to actively participate in public debate to support citizens' informed attitude formation.


Assuntos
Experimentação Animal , Animais , Bolsas de Estudo , Atitude , Comunicação , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA