Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Pediatr Blood Cancer ; 68(5): e28847, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33305874

RESUMO

Corticosteroids are essential to treating childhood acute lymphoblastic leukemia (ALL), and can cause significant neuropsychiatric side effects. This retrospective chart review is a preliminary exploration of characteristics associated with psychiatry consultation and steroid-induced affective disorder (SIAD) during ALL treatment. Of 125 ALL patients (ages 1-10 years), 56 (44.8%) received psychiatry consultation. Thirty-nine (31.2%) of the total cohort were diagnosed with SIAD. SIAD was significantly associated with family psychiatric history, but not with steroid exposure, CNS radiation, sociodemographic factors, developmental delay, Trisomy 21, or prior psychiatric history. Gathering family psychiatric history may help identify children at increased risk of SIAD.


Assuntos
Corticosteroides/efeitos adversos , Dexametasona/efeitos adversos , Metilprednisolona/efeitos adversos , Transtornos do Humor/induzido quimicamente , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Transtornos do Humor/epidemiologia , Estudos Retrospectivos , Fatores de Risco
2.
J Bone Miner Res ; 37(5): 954-971, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122666

RESUMO

Although the nonselective ß-blocker, propranolol, improves bone density with parathyroid hormone (PTH) treatment in mice, the mechanism of this effect is unclear. To address this, we used a combination of in vitro and in vivo approaches to address how propranolol influences bone remodeling in the context of PTH treatment. In female C57BL/6J mice, intermittent PTH and propranolol administration had complementary effects in the trabecular bone of the distal femur and fifth lumbar vertebra (L5 ), with combination treatment achieving microarchitectural parameters beyond that of PTH alone. Combined treatment improved the serum bone formation marker, procollagen type 1 N propeptide (P1NP), but did not impact other histomorphometric parameters relating to osteoblast function at the L5 . In vitro, propranolol amplified the acute, PTH-induced, intracellular calcium signal in osteoblast-like cells. The most striking finding, however, was suppression of PTH-induced bone resorption. Despite this, PTH-induced receptor activator of nuclear factor κ-B ligand (RANKL) mRNA and protein levels were unaltered by propranolol, which led us to hypothesize that propranolol could act directly on osteoclasts. Using in situ methods, we found Adrb2 expression in osteoclasts in vivo, suggesting ß-blockers may directly impact osteoclasts. Consistent with this, we found propranolol directly suppresses osteoclast differentiation in vitro. Taken together, this work suggests a strong anti-osteoclastic effect of nonselective ß-blockers in vivo, indicating that combining propranolol with PTH could be beneficial to patients with extremely low bone density. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Hormônio Paratireóideo , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Osso e Ossos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos , Osteoclastos/metabolismo , Osteogênese , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Propranolol/metabolismo , Propranolol/farmacologia
3.
PLoS One ; 16(6): e0231060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086678

RESUMO

Trpm8 (transient receptor potential cation channel, subfamily M, member 8) is expressed by sensory neurons and is involved in the detection of environmental cold temperatures. TRPM8 activity triggers an increase in uncoupling protein 1 (Ucp1)-dependent brown adipose tissue (BAT) thermogenesis. Bone density and marrow adipose tissue are both influenced by rodent housing temperature and brown adipose tissue, but it is unknown if TRPM8 is involved in the co-regulation of thermogenesis and bone homeostasis. To address this, we examined the bone phenotypes of one-year-old Trpm8 knockout mice (Trpm8-KO) after a 4-week cold temperature challenge. Male Trpm8-KO mice had lower bone mineral density than WT, with smaller bone size (femur length and cross-sectional area) being the most striking finding, and exhibited a delayed cold acclimation with increased BAT expression of Dio2 and Cidea compared to WT. In contrast to males, female Trpm8-KO mice had low vertebral bone microarchitectural parameters, but no genotype-specific alterations in body temperature. Interestingly, Trpm8 was not required for cold-induced trabecular bone loss in either sex, but bone marrow adipose tissue in females was significantly suppressed by Trpm8 deletion. In summary, we identified sex differences in the role of TRPM8 in maintaining body temperature, bone microarchitecture and marrow adipose tissue. Identifying mechanisms through which cold temperature and BAT influence bone could help to ameliorate potential bone side effects of obesity treatments designed to stimulate thermogenesis.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Doenças Ósseas/metabolismo , Doenças Ósseas/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Canais de Cátion TRPM/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiopatologia , Animais , Temperatura Baixa , Metabolismo Energético/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo
4.
Bone ; 103: 168-176, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28689816

RESUMO

Atypical antipsychotic (AA) drugs, including risperidone (RIS), are used to treat schizophrenia, bipolar disorder, and autism, and are prescribed off-label for other mental health issues. AA drugs are associated with severe metabolic side effects of obesity and type 2 diabetes. Cross-sectional and longitudinal data also show that risperidone causes bone loss and increases fracture risk in both men and women. There are several potential mechanisms of bone loss from RIS. One is hypogonadism due to hyperprolactinemia from dopamine receptor antagonism. However, many patients have normal prolactin levels; moreover we demonstrated that bone loss from RIS in mice can be blocked by inhibition of ß-adrenergic receptor activation with propranolol, suggesting the sympathetic nervous system (SNS) plays a pathological role. Further, when, we treated ovariectomized (OVX) and sham operated mice daily for 8weeks with RIS or vehicle we demonstrated that RIS causes significant trabecular bone loss in both sham operated and OVX mice. RIS directly suppressed osteoblast number in both sham and OVX mice, but increased osteoclast number and surface in OVX mice alone, potentially accounting for the augmented bone loss. Thus, hypogonadism alone cannot explain RIS induced bone loss. In the current study, we show that dopamine and RIS are present in the bone marrow compartment and that RIS can exert its effects directly on bone cells via dopamine receptors. Our findings of both direct and indirect effects of AA drugs on bone are relevant for current and future clinical and translational studies investigating the mechanism of skeletal changes from AA drugs.


Assuntos
Antipsicóticos/toxicidade , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/metabolismo , Dopamina/metabolismo , Risperidona/toxicidade , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA