Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(46): e2304585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469201

RESUMO

High-entropy oxides (HEOs) have emerged as promising anode materials for next-generation lithium-ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen-deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li+ storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X-ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal-forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe3+ , Co3+ /Co2+ , and Ni2+ , undergo reduction to Fe0 , Co0 , and Ni0 to different extent (Fe < Co < Ni). Manganese undergoes partial reduction to Mn3+ /Mn2+ and, upon re-oxidation, does not revert to the pristine oxidation state (+4). Zn2+ cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li-ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.

2.
Phys Chem Chem Phys ; 25(3): 2212-2226, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594637

RESUMO

High-entropy oxide nanofibers, based on equimolar (Cr,Mn,Fe,Co,Ni), (Cr,Mn,Fe,Co,Zn) and (Cr,Mn,Fe,Ni,Zn) combinations, were prepared by electrospinning followed by calcination. The obtained hollow nanofibers exhibited a porous structure consisting of interconnected nearly strain-free (Cr1/5Mn1/5Fe1/5Co1/5Ni1/5)3O4, (Cr1/5Mn1/5Fe1/5Co1/5Zn1/5)3O4 and (Cr1/5Mn1/5Fe1/5Ni1/5Zn1/5)3O4 single crystals with a pure Fd3̄m spinel structure. Oxidation state of the cations at the nanofiber surface was assessed by X-ray photoelectron spectroscopy and cation distributions were proposed satisfying electroneutrality and optimizing octahedral stabilization. The magnetic data are consistent with a distribution of cations that satisfies the energetic preferences for octahedral vs. tetrahedral sites and is random only within the octahedral and tetrahedral sublattices. The nanofibers are ferrimagnets with relatively low critical temperature more similar to cubic chromites and manganites than to ferrites. Replacing the magnetic cations Co or Ni with non-magnetic Zn lowers the critical temperature from 374 K (Cr,Mn,Fe,Co,Ni) to 233 and 105 K for (Cr,Mn,Fe,Ni,Zn) and (Cr,Mn,Fe,Co,Zn), respectively. The latter nanofibers additionally have a low temperature transition to a reentrant spin-glass-like state.

3.
Langmuir ; 36(5): 1305-1319, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31958957

RESUMO

In the last years, hematite has been utilized in a plethora of applications. High aspect-ratio nanohematite and hematite/silica core-shell nanostructures are arousing growing interest for applications exploiting their magnetic properties. Atomic layer deposition (ALD) is utilized here to produce SiO2-coated α-Fe2O3 nanofibers (NFs) through two synthetic routes, viz. electrospinning/calcination/ALD or electrospinning/ALD/calcination. The number of ALD cycles (10-100) modulates the coating thickness, while the chosen route controls the final nanostructure. Porous and partially hollow NFs are produced. Their hierarchical structure and the nature and density of the lattice defects and strain are characterized by combining electron microscopy, diffraction, and spectroscopy techniques. The uncoated hematite NFs mostly have surface-related strain, which is attributed to oxygen vacancies/Fe2+ sites. ALD coating causes microstrain release and decrease of surface states. NFs calcined after ALD have extensive bulk strain, which is ascribed to the presence of dislocations throughout the volume of the NF grains. Bulk strain determines the remanent magnetization, whereas both surface and bulk strain influence the coercive field and the thermal behavior across the Morin temperature, including the magnetic memory effect. To the best of the authors' knowledge, the correlation between lattice defects/strain and magnetic properties of SiO2-coated α-Fe2O3 NFs has never been reported before.

4.
Biomacromolecules ; 20(7): 2530-2544, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31241900

RESUMO

Nowadays, active targeting of nanotherapeutics is a challenging issue. Here, we propose a rational design of a ternary nanoassembly (SAP) composed of nonionic amphiphilic ß-cyclodextrins (amphiphilic CD) incorporating pheophorbide (Pheo) as a phototherapeutic and an adamantanyl-folic acid conjugate (Ada-FA) to target tumor cells overexpressing α-folate receptor (FR-α(+)). Dynamic light scattering and ζ-potential pointed out the presence of nanoassemblies bearing a negative surface charge (ζ = -51 mV). Morphology of SAP was investigated by atomic force microscopy and microphotoluminescence, indicating the presence of highly emissive near-spherical assemblies of about 280 nm in size. Complementary spectroscopic techniques such as ROESY-NMR, UV/vis and steady-state fluorescence revealed that the folic acid protrudes out of amphiphilic CD rims, prone for recognition with FR-α. Pheo was strongly loaded in the nanoassembly mostly in monomeric form, thus generating singlet oxygen (1O2) and consequentely showing phototherapeutic action. SAP remained stable until 2 weeks in aqueous solutions. Stability studies in biologically relevant media pointed out the ability of SAP to interact with serum proteins by means of the oligoethylenglycole fringe, without destabilization. Release experiments demonstrated the sustained release of Pheo from SAP in environments mimiking physiological conditions (∼20% within 1 week), plausibly suggesting low Pheo leaking and high integrity of the assembly within 24 h, time spent on average to reach the target sites. Cellular uptake of SAP was confirmed by confocal microscopy, pointing out that SAP was internalized into the tumoral cells expressing FR-α more efficiently than SP. SAP showed improved phototoxicity in human breast MCF-7 cancer cells FR-α(+) (IC50 = 270 nM) with respect to human prostate carcinoma PC3 cells (IC50 = 700 nM) that express a low level of that receptor (FR-α(-)). Finally, an improved phototoxicity in FR-α(+) MCF-7 cells (IC50 = 270 nM) was assessed after treatment with SAP vs SP (IC50 = 600 nM) which was designed without Ada-FA as a targeting unit.


Assuntos
Ciclodextrinas , Sistemas de Liberação de Medicamentos , Ácido Fólico , Neoplasias , Fotoquimioterapia , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3
5.
Chem Mater ; 35(20): 8440-8454, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901146

RESUMO

Sodium-ion batteries have recently aroused the interest of industries as possible replacements for lithium-ion batteries in some areas. With their high theoretical capacities and competitive prices, P2-type layered oxides (NaxTMO2) are among the obvious choices in terms of cathode materials. On the other hand, many of these materials are unstable in air due to their reactivity toward water and carbon dioxide. Here, Na0.67Mn0.9Ni0.1O2 (NMNO), one of such materials, has been synthesized by a classic sol-gel method and then exposed to air for several weeks as a way to allow a simple and reproducible transition toward a Na-rich birnessite phase. The transition between the anhydrous P2 to the hydrated birnessite structure has been followed via periodic XRD analyses, as well as neutron diffraction ones. Extensive electrochemical characterizations of both pristine NMNO and the air-exposed one vs sodium in organic medium showed comparable performances, with capacities fading from 140 to 60 mAh g-1 in around 100 cycles. Structural evolution of the air-exposed NMNO has been investigated both with ex situ synchrotron XRD and Raman. Finally, DFT analyses showed similar charge compensation mechanisms between P2 and birnessite phases, providing a reason for the similarities between the electrochemical properties of both materials.

6.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055230

RESUMO

Over the past decade, interest about metal halide perovskites has rapidly increased, as they can find wide application in optoelectronic devices. Nevertheless, although thermal evaporation is crucial for the development and engineering of such devices based on multilayer structures, the optical properties of thermally deposited perovskite layers (spontaneous and amplified spontaneous emission) have been poorly investigated. This paper is a study from a nano- to micro- and macro-scale about the role of light-emitting species (namely free carriers and excitons) and trap states in the spontaneous emission of thermally evaporated thin layers of CH3NH3PbBr3 perovskite after wet air UV light trap passivation. The map of light emission from grains, carried out by SNOM at the nanoscale and by micro-PL techniques, clearly indicates that free and localized excitons (EXs) are the dominant light-emitting species, the localized excitons being the dominant ones in the presence of crystallites. These species also have a key role in the amplified spontaneous emission (ASE) process: for higher excitation densities, the relative contribution of localized EXs basically remains constant, while a clear competition between ASE and free EXs spontaneous emission is present, which suggests that ASE is due to stimulated emission from the free EXs.

7.
Membranes (Basel) ; 11(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357165

RESUMO

Presently, adsorption/absorption is one of the most efficient and cost-effective methods to clean oil spill up. In this work, self-supporting paper-like fibrous membranes were prepared via electrospinning and carbonisation at different temperatures (500, 650 or 800 °C) by using polyacrylonitrile/polymethylmethacrylate blends with a different mass ratio of the two polymers (1:0, 6:1 or 2:1). After morphological and microstructural characterisation, the as-produced membranes were evaluated as sorbents by immersion in vegetable (sunflower seed or olive) and mineral (motor) oil or in 1:4 (v:v) oil/water mixture. Nitrogen-rich membrane carbonised at the lowest temperature behaves differently from the others, whose sorption capacity by immersion in oil, despite the great number of sorbent and oil properties involved, is mainly controlled by the fraction of micropores. The encapsulation of water nanodroplets by the oil occurring during the immersion in oil/water mixture causes the oil-from-water separation ability to show an opposite behaviour compared to the sorption capacity. Overall, among the investigated membranes, the support produced with 2:1 mass ratio of the polymers and carbonisation at 650 °C exhibits the best performance both in terms of sorption capacity (73.5, 54.8 and 12.5 g g-1 for olive, sunflower seed and motor oil, respectively) and oil-from-water separation ability (74, 69 and 16 for olive, sunflower seed and motor oil, respectively).

8.
ChemistryOpen ; 10(10): 1033-1040, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648236

RESUMO

We report on the facile synthesis of SiO2 @nitrized-TiO2 nanocomposite (NST) by calcination of TiO2 xerogel with OctaAmmonium POSS® (N-POSS; POSS=polyhedral oligomeric silsesquioxanes). The as-obtained nanoporous mixed oxide is constituted by uniformly distributed SiO2 and nitrized-TiO2 , where the silica component is present in an amorphous state and TiO2 in an anatase/rutile mixed phase (92.1 % vs. 7.9 %, respectively) with very small anatase crystallites (3.7 nm). The TiO2 lattice is nitrized both at interstitial and substitutional positions. NST features a negatively charged surface with a remarkable surface area (406 m2 g-1 ), endowed with special adsorption capabilities towards cationic dyes. Its photocatalytic behavior was tested by following the degradation of standard aqueous methylene blue and methyl orange solutions under UV and visible light irradiation, according to ISO 10678:2010. For comparison, analogous investigations were carried out on a silica-free N-TiO2 , obtained by using NH4 Cl as nitrogen source.

9.
Nanomaterials (Basel) ; 10(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806779

RESUMO

The effect of the type of dopant (titanium and manganese) and of the reduced graphene oxide content (rGO, 30 or 50 wt %) of the α-Fe2O3@rGO nanocomposites on their microstructural properties and electrochemical performance was investigated. Nanostructured composites were synthesized by a simple one-step solvothermal method and evaluated as anode materials for sodium ion batteries. The doping does not influence the crystalline phase and morphology of the iron oxide nanoparticles, but remarkably increases stability and Coulombic efficiency with respect to the anode based on the composite α-Fe2O3@rGO. For fixed rGO content, Ti-doping improves the rate capability at lower rates, whereas Mn-doping enhances the electrode stability at higher rates, retaining a specific capacity of 56 mAhg-1 at a rate of 2C. Nanocomposites with higher rGO content exhibit better electrochemical performance.

10.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352966

RESUMO

Due to their outstanding physicochemical properties, the next generation of the graphene family-graphene quantum dots (GQDs)-are at the cutting edge of nanotechnology development. GQDs generally possess many hydrophilic functionalities which allow their dispersibility in water but, on the other hand, could interfere with reactions that are mainly performed in organic solvents, as for cycloaddition reactions. We investigated the 1,3-dipolar cycloaddition (1,3-DCA) reactions of the C-ethoxycarbonyl N-methyl nitrone 1a and the newly synthesized C-diethoxyphosphorylpropilidene N-benzyl nitrone 1b with the surface of GQDs, affording the isoxazolidine cycloadducts isox-GQDs 2a and isox-GQDs 2b. Reactions were performed in mild and eco-friendly conditions, through the use of a natural deep eutectic solvent (NADES), free of chloride or any metal ions in its composition, and formed by the zwitterionic trimethylglycine as the -bond acceptor, and glycolic acid as the hydrogen-bond donor. The results reported in this study have for the first time proved the possibility of performing cycloaddition reactions directly to the p-cloud of the GQDs surface. The use of DES for the cycloaddition reactions on GQDs, other than to improve the solubility of reactants, has been shown to bring additional advantages because of the great affinity of these green solvents with aromatic systems.

11.
Sci Rep ; 9(1): 5320, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926866

RESUMO

We present scanning near-field images of surface plasmon modes around a single elliptical nanohole in 88 nm thick Au film. We find that rotating surface plasmon vortex modes carrying extrinsic orbital angular momentum can be induced under linearly polarized illumination. The vortex modes are obtained only when the incident polarization direction differs from one of the ellipse axes. Such a direct observation of the vortex modes is possible thanks to the ability of the SNOM technique to obtain information on both the amplitude and the phase of the near-field. The presence of the vortex mode is determined by the rotational symmetry breaking of the system. Finite element method calculations show that such a vorticity originates from the presence of nodal points where the phase of the field is undefined, leading to a circulation of the energy flow. The configuration producing vortex modes corresponds to a nonzero total topological charge (+1).

12.
Nanomaterials (Basel) ; 9(2)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781623

RESUMO

Graphene quantum dots (GQD), the new generation members of graphene-family, have shown promising applications in anticancer therapy. In this study, we report the synthesis of a fluorescent and biocompatible nanovector, based on GQD, for the targeted delivery of an anticancer drug with benzofuran structure (BFG) and bearing the targeting ligand riboflavin (RF, vitamin B2). The highly water-dispersible nanoparticles, synthesized from multi-walled carbon nanotubes (MWCNT) by prolonged acidic treatment, were linked covalently to the drug by means of a cleavable PEG linker while the targeting ligand RF was conjugated to the GQD by π⁻π interaction using a pyrene linker. The cytotoxic effect of the synthesized drug delivery system (DDS) GQD-PEG-BFG@Pyr-RF was tested on three cancer cell lines and this effect was compared with that exerted by the same nanovector lacking the RF ligand (GQD-PEG-BFG) or the anticancer drug (GQD@Pyr-RF). The results of biological tests underlined the low cytotoxicity of the GQD sample and the cytotoxic activity of the DDS against the investigated cancer cell lines with a higher or similar potency to that exerted by the BFG alone, thus opening new possibilities for the use of this drug or other anticancer agents endowed of cytotoxicity and serious side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA