Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Genomics ; 19(1): 21-35, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29491730

RESUMO

In the recent years, glyoxalase pathway has been an active area of research in both human and plants. This pathway is reported to confer stress tolerance in plants, by modulating the glutathione homeostasis to achieve detoxification of a potent cytotoxic and mutagenic compound, methylglyoxal. The microRNAs (miRNAs) are also reported to play significant role in stress tolerance for plants. However, the cross-talk of miRNAs with the metabolism regulated by glyoxalase in the salinity-tolerance is unexplored. We therefore investigated whether expression profiles of miRNAs are altered in response to glyoxalase overexpression, and if any of these are also responsible for modulating the stress responses of plants. In this study, the Next Generation Sequencing (NGS) was employed to profile miRNA expression levels from glyoxalase overexpressing transgenic lines. The associated targets of differentially expressed miRNAs were predicted and their functional annotation was carried out using Gene Ontology (GO) and KEGG Orthology (KO), which showed their involvement in several crucial biological pathways. The analysis of NGS datasets also identified other isoforms or isomiRs of selected miRNAs, which may have an active role in developing tolerance against salt stress. Different aspects of miRNA modifications were also studied in glyoxalase overexpressing lines.

2.
Physiol Mol Biol Plants ; 24(2): 185-202, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29515314

RESUMO

Increasing incidence of viral infections in crop plants adversely affects their growth and yield. Tomato (Solanum lycopersicum) is considered to be a favorite host for viruses with over 50 species of begomoviruses naturally infecting this crop. Tomato leaf curl virus (ToLCV) is among the most widespread and devastating begomoviruses affecting tomato production. microRNAs (miRs) have been established as key regulators of gene expression and plant development. The miR pathways are disturbed during infection by viruses. Thus, comprehension of regulatory miR networks is crucial in understanding the effect of viral pathogenicity. To identify key miRs involved in ToLCV infection, a high throughput approach involving next generation sequencing was employed. Healthy and infected leaf tissues of two tomato varieties, differing in their susceptibility to ToLCV infection were analyzed. NGS data analysis followed by computational predictions, led to identification of 91 known miRs, 15 novel homologs and 53 novel miRs covering two different varieties of tomato, susceptible (Pusa Ruby) and tolerant (LA1777) to ToLCV infection. The cleaved targets of these miRs were identified using online available degradome libraries from leaf, flower and fruit of tomato and showed their involvement in various biological pathways through KEGG Orthology. With detailed comparative profiling of expression pattern of these miRs, we could associate the specific miRs with the resistant and infected genotypes. This study depicted that in depth analysis of miR expression patterns and their functions will help in identification of molecules that can be used for manipulation of gene expression to increase crop production and developing resistance against diseases.

3.
Microorganisms ; 10(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208652

RESUMO

RNA silencing is as an adaptive immune response in plants that limits the accumulation or spread of invading viruses. Successful virus infection entails countering the RNA silencing machinery for efficient replication and systemic spread in the host. The viruses encode proteins with the ability to suppress or block the host silencing mechanism, resulting in severe pathogenic symptoms and diseases. Tungro is a viral disease caused by a complex of two viruses and it provides an excellent system to understand the host and virus interactions during infection. It is known that Rice tungro bacilliform virus (RTBV) is the major determinant of the disease while Rice tungro spherical virus (RTSV) accentuates the symptoms. This study brings to focus the important role of RTBV ORF-IV in disease manifestation, by acting as both the victim and silencer of the RNA silencing pathway. The ORF-IV is a weak suppressor of the S-PTGS or stable silencing, but its suppression activity is augmented in the presence of specific RTSV proteins. Among these, RTBV ORF-IV and RTSV CP3 proteins interact with each other. This interaction may lead to the suppression of localized silencing as well as the spread of silencing in the host plants. The findings present a probable mechanistic glimpse of the requirement of the two viruses in enhancing tungro disease.

4.
Front Plant Sci ; 9: 602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868062

RESUMO

ARMOUR was developed as A Rice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of miRNA:mRNA interactome in regulation of functional cellular machinery is supported by the sequence information of the mature and hairpin structures. ARMOUR provides flexibility to users in querying the database using multiple ways like known gene identifiers, gene ontology identifiers, KEGG identifiers and also allows on the fly fold change analysis and sequence search query with inbuilt BLAST algorithm. ARMOUR database provides a cohesive platform for novel and mature miRNAs and their expression in different experimental conditions and allows searching for their interacting mRNA targets, GO annotation and their involvement in various biological pathways. The ARMOUR database includes a provision for adding more experimental data from users, with an aim to develop it as a platform for sharing and comparing experimental data contributed by research groups working on rice.

5.
J Integr Bioinform ; 14(1)2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28637931

RESUMO

Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant's response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genômica , MicroRNAs/genética , Oryza/efeitos dos fármacos , Oryza/genética , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Mineração de Dados , Regulação da Expressão Gênica de Plantas/genética , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
6.
Gene Expr Patterns ; 20(2): 88-98, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26772909

RESUMO

The regulatory role of small non-coding RNAs that are 20-24 nucleotides in length has become the foremost area of research for biologists. A major class of small RNAs represented by the microRNAs (miRNAs), has been implicated in various aspects of plant development including leaf pattering, meristem function, root patterning etc. Recent findings support that miRNAs are regulated by drought and other abiotic stresses in various plant species. In this study, were report the expression profiling of 8 known abiotic stress deregulated miRNAs in 11 elite sorghum genotypes, under watered and drought conditions. Significant deregulation was observed with miR396, miR393, miR397-5p, miR166, miR167 and miR168. Among these, the expression levels of sbi-miR396 and sbi-miR398 were the highest in all the genotypes. The expression of sbi-miR396 was maximum in the grain sorghum HSD3226 under well-watered conditions and the profile shifted towards HSD3221 under drought stress. Forage accessions, N98 and Atlas, showed an opposite behavior in expression patterns of miR397-5p in drought physiologies. Such dynamic expression patterns could be indicative of prevailing drought tolerant mechanisms present in these sorghum accessions. This data provides insights into sorghum miRNAs which may have potential use in improving drought tolerance in sorghum and other cereal crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Sorghum/genética , Estresse Fisiológico/genética , Secas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , Água/metabolismo
7.
Front Physiol ; 6: 286, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26578966

RESUMO

microRNAs (miRs) are a class of 21-24 nucleotide long non-coding RNAs responsible for regulating the expression of associated genes mainly by cleavage or translational inhibition of the target transcripts. With this characteristic of silencing, miRs act as an important component in regulation of plant responses in various stress conditions. In recent years, with drastic change in environmental and soil conditions different type of stresses have emerged as a major challenge for plants growth and productivity. The identification and profiling of miRs has itself been a challenge for research workers given their small size and large number of many probable sequences in the genome. Application of computational approaches has expedited the process of identification of miRs and their expression profiling in different conditions. The development of High-Throughput Sequencing (HTS) techniques has facilitated to gain access to the global profiles of the miRs for understanding their mode of action in plants. Introduction of various bioinformatics databases and tools have revolutionized the study of miRs and other small RNAs. This review focuses the role of bioinformatics approaches in the identification and study of the regulatory roles of plant miRs in the adaptive response to stresses.

8.
Front Plant Sci ; 6: 333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029232

RESUMO

Plant microRNAs (miRs) have emerged as important regulators of gene expression under normal as well as stressful environments. Rice is an important cereal crop whose productivity is compromised due to various abiotic stress factors such as salt, heat and drought. In the present study, we have investigated the role of rice-specific Osa-miR820, in indica rice cultivars showing contrasting response to salt stress. The dissection of expression patterns indicated that the miR is present in all the tissues but is enriched in the anther tissues. In salinity, the miR levels are up-regulated in the leaf tissues but down-regulated in the root tissues. To map the deregulation under salt stress comprehensive time kinetics of expression was performed in the leaf and root tissues. The reproductive stages were also analyzed under salt stress. It emerged that a common regulatory scheme for Osa-miR820 expression is present in the salt-susceptible Pusa Basmati 1 and salt-tolerant Pokkali varieties, although there is a variation in the levels of the miR and its target transcript, OsDRM2. The regulation of Osa-miR820 and its target were also studied under other abiotic stresses. This study thus captures the window for the miR-target correlation and the putative role of this regulation is discussed. This will help in gaining useful insights on the role of species specific miRs in plant development and abiotic stress response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA