Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 73: 11-16, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29526195

RESUMO

Kombucha is a traditional beverage produced by tea fermentation, carried out by a symbiotic consortium of bacteria and yeasts. Acetic Acid Bacteria (AAB) usually dominate the bacterial community of Kombucha, driving the fermentative process. The consumption of this beverage was often associated to beneficial effects for the health, due to its antioxidant and detoxifying properties. We characterized bacterial populations of Kombucha tea fermented at 20 or 30 °C by using culture-dependent and -independent methods and monitored the concentration of gluconic and glucuronic acids, as well as of total polyphenols. We found significant differences in the microbiota at the two temperatures. Moreover, different species of Gluconacetobacter were selected, leading to a differential abundance of gluconic and glucuronic acids.


Assuntos
Ácido Acético/metabolismo , Bactérias/metabolismo , Chá de Kombucha/análise , Chá de Kombucha/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fermentação , Gluconatos/análise , Gluconatos/metabolismo , Glucuronatos/análise , Glucuronatos/metabolismo , Microbiota , Filogenia , Polifenóis/análise , Polifenóis/metabolismo , Temperatura
2.
Amino Acids ; 47(1): 111-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25323735

RESUMO

The formation of the Amadori products (APs) is the first key step of Maillard reaction. Only few papers have dealt with simultaneous quantitation of amino acids and corresponding APs (1-amino-1-deoxy-2-ketose). Chromatographic separation of APs is affected by several drawbacks mainly related to their poor retention in conventional reversed phase separation. In this paper, a method for the simultaneous quantification of amino acids and their respective APs was developed combining high-resolution mass spectrometry with ion-pairing liquid chromatography. The limit of detection was 0.1 ng/mL for tryptophan, valine and arginine, while the limit of quantification ranged from 2 to 5 ng/mL according to the specific sensitivity of each analyte. The relative standard deviation % was lower than 10 % and the coefficient of correlation was higher than 0.99 for each calibration curve. The method was applied to milk, milk-based products, raw and processed tomato. Among the analyzed products, the most abundant amino acid was glutamic acid (16,646.89 ± 1,385.40 µg/g) and the most abundant AP was fructosyl-arginine in tomato puree (774.82 ± 10.01 µg/g). The easiness of sample preparation coupled to the analytical performances of the proposed method introduced the possibility to use the pattern of free amino acids and corresponding APs in the evaluation of the quality of raw food as well as the extent of thermal treatments in different food products.


Assuntos
Aminoácidos/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Leite/química , Solanum lycopersicum/química , Animais , Bovinos , Reação de Maillard
3.
Amino Acids ; 46(2): 279-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23604465

RESUMO

Fructosamines, also known as Amadori products, are formed by the condensation of glucose with the amino group of amino acids or proteins. These compounds are precursors of advanced glycation end products (AGEs) that can be formed either endogenously during aging and diabetes, and exogenously in heat-processed food. The negative effects of dietary AGEs on human health as well as their negative impact on the quality of dairy products have been widely described, therefore specific tools able to prevent the formation of glycation products are needed. Two fructosamine oxidase enzymes isolated from Aspergillus sp. namely, Faox I and Faox II catalyze the oxidative deglycation of Amadori products representing a potential tool for inhibiting the Maillard reaction in dairy products. In this paper, the ability of recombinant Faox I and II in limiting the formation of carboxy-methyl lysine (CML) and protein-bound hydroxymethyl furfurol (b-HMF) in a commercial UHT low lactose milk and a beta-lactoglobulin (ß-LG) glucose model system was investigated. Results show a consistent reduction of CML and b-HMF under all conditions. Faox effects were particularly evident on b-HMF formation in low lactose commercial milk. Peptide analysis of the ß-LG glucose system identified some peptides, derived from cyanogen bromide hydrolysis, as suitable candidates to monitor Faox action in milk-based products. All in all data suggested that non-enzymatic reactions in dairy products might be strongly reduced by implementing Faox enzymes.


Assuntos
Aminoácido Oxirredutases/química , Proteínas Fúngicas/química , Glucose/química , Produtos Finais de Glicação Avançada/química , Lactoglobulinas/química , Leite/química , Sequência de Aminoácidos , Animais , Armazenamento de Alimentos , Frutosamina/química , Concentração de Íons de Hidrogênio , Lactose/química , Dados de Sequência Molecular , Pasteurização
4.
J Agric Food Chem ; 72(11): 5777-5783, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456211

RESUMO

Coffee is one of the most popular beverages around the world and its consumption contributes to the daily intake of dietary melanoidins. Despite the emerging physiological role of food melanoidins, their effect on digestive processes has not been studied so far. In this study, the activity of the gastrointestinal enzymes pepsin and trypsin was investigated in the presence of water-soluble coffee melanoidins. The gastric enzyme pepsin is only slightly affected, whereas the intestinal enzyme trypsin is severely inhibited by coffee melanoidins. The intestinal digestibility of casein was significantly inhibited by coffee melanoidins at a concentration achievable by regular coffee consumption. The inhibition of proteolytic enzymes by coffee melanoidins might decrease the nutritional value of dietary proteins.


Assuntos
Café , Pepsina A , Polímeros , Peptídeo Hidrolases , Tripsina , Proteínas Alimentares/metabolismo
5.
Curr Res Food Sci ; 8: 100767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774268

RESUMO

Maillard reaction readily takes place in dairy products because of the association between thermal treatments, extended storage and the matrix composition. Along with the impairment of protein digestion, the formation of glycation and α-dicarbonyl compounds is a concern for quality attributes of whey proteins when used as ingredients. In this paper, we outline the capacity of brewer's spent grain melanoidins in reducing the accumulation of α-dicarbonyl compounds, thus controlling the formation of dietary advanced glycation end-products in accelerated shelf life at 35 °C. Results revealed that brewer's spent grain melanoidins targeted methylglyoxal and glyoxal reactivity leading to the reduction of N-ε-carboxymethyllysine and methylglyoxal-hydroimidazolone up to 27 and 60%, respectively. We here describe that the presence of melanoidins is instrumental in limiting the undesired effects of α-dicarbonyl compounds on whey proteins.

6.
Biofactors ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801155

RESUMO

The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis. In this study, we explored whether Limosilactobacillus reuteri DSM 17938 (L. reuteri)-based approach can counteract diet-induced neuroinflammation, endoplasmic reticulum stress (ERS), and autophagy in hippocampus, an area involved in learning and memory, in rat fed a high fat and fructose diet. The western diet induced a microbiota reshaping, but L. reuteri neither modulated this change, nor the plasma levels of short-chain fatty acids. Interestingly, pro-inflammatory signaling pathway activation (increased NFkB phosphorylation, raised amounts of toll-like receptor-4, tumor necrosis factor-alpha, interleukin-6, GFAP, and Haptoglobin), as well as activation of ERS (increased PERK and eif2α phosphorylation, higher C/EBP-homologous protein amounts) and autophagy (increased beclin, P62-sequestosome-1, and LC3 II) was revealed in hippocampus of western diet fed rats. All these hippocampal alterations were prevented by L. reuteri administration, showing for the first time a neuroprotective role of this specific probiotic strain, mainly attributable to its ability to regulate western diet-induced metabolic endotoxemia and systemic inflammation, as decreased levels of lipopolysaccharide, plasma cytokines, and adipokines were also found. Therapeutic strategies based on the use of L. reuteri DSM17938 could be beneficial in reversing metabolic syndrome-mediated brain dysfunction and cognitive decline.

7.
Food Funct ; 14(4): 2074-2081, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36728638

RESUMO

During food processing most of the thermally-driven chemical reactions start off on the side chain amino group of lysine generating structurally modified compounds with specific metabolic routes. Upon human digestion, dietary Nε-carboxymethyllysine (CML) may enter the colon and undergo gut microbial metabolism. However, little is known about the in vivo metabolic fate of dietary CML and its relationship with the habitual diet. We explored by hydrophilic interaction liquid chromatography tandem mass spectrometry the metabolites of CML in urine samples collected from 46 healthy subjects and studied the associations with diet. Mean concentration of N-carboxymethylcadaverine (CM-CAD), N-carboxymethylaminopentanoic acid (CM-APA), N-carboxymethylaminopentanol (CM-APO), and the N-carboxymethyl-Δ1-piperideinium ion were 0.49 nmol mg-1 creatinine, 1.45 nmol mg-1 creatinine, 4.43 nmol mg-1 creatinine and 4.79 nmol mg-1 creatinine, respectively. The urinary concentration of CML, its metabolites and lysine were positively correlated. Dietary intake of meat products negatively correlated with urinary excretion of CML and CM-APA; conversely dietary plant-to-animal proteins ratio positively correlated with urinary CML and its metabolites. The identification and quantification of CML metabolites in urine and the associations with diet corroborate the hypothesis that CML, an advanced glycation end-product, can undergo further biochemical transformations in vivo. The gut microbiome may have a major role in human metabolism of dietary CML.


Assuntos
Dieta , Lisina , Animais , Humanos , Lisina/química , Creatinina , Produtos Finais de Glicação Avançada/metabolismo , Reação de Maillard
8.
Front Plant Sci ; 14: 1093074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794209

RESUMO

Together with phenological and genomic approaches, gel-based and label-free proteomic as well metabolomic procedures were separately applied to plants to highlight differences between ecotypes, to estimate genetic variability within/between organism populations, or to characterize specific mutants/genetically modified lines at metabolic level. To investigate the possible use of tandem mass tag (TMT)-based quantitative proteomics in the above-mentioned contexts and based on the absence of combined proteo-metabolomic studies on Diospyros kaki cultivars, we here applied integrated proteomic and metabolomic approaches to fruits from Italian persimmon ecotypes with the aim to characterize plant phenotypic diversity at molecular level. We identified 2255 proteins in fruits, assigning 102 differentially represented components between cultivars, including some related to pomological, nutritional and allergenic characteristics. Thirty-three polyphenols were also identified and quantified, which belong to hydroxybenzoic acid, flavanol, hydroxycinnamic acid, flavonol, flavanone and dihydrochalcone sub-classes. Heat-map representation of quantitative proteomic and metabolomic results highlighted compound representation differences in various accessions, whose elaboration through Euclidean distance functions and other linkage methods defined dendrograms establishing phenotypic relationships between cultivars. Principal component analysis of proteomic and metabolomic data provided clear information on phenotypic differences/similarities between persimmon accessions. Coherent cultivar association results were observed between proteomic and metabolomic data, emphasizing the utility of integrating combined omic approaches to identify and validate phenotypic relationships between ecotypes, and to estimate corresponding variability and distance. Accordingly, this study describes an original, combined approach to outline phenotypic signatures in persimmon cultivars, which may be used for a further characterization of other ecotypes of the same species and an improved description of nutritional characteristics of corresponding fruits.

9.
Mol Neurobiol ; 60(2): 1004-1020, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394711

RESUMO

The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.


Assuntos
Acetilcolinesterase , Fator Neurotrófico Derivado do Encéfalo , Animais , Ratos , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lobo Frontal/metabolismo , Frutose/efeitos adversos
10.
J Agric Food Chem ; 70(13): 3958-3968, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344652

RESUMO

The aryl hydrocarbon receptor (AhR) plays an important role in intestinal homeostasis, and some microbial metabolites of tryptophan are known AhR agonists. In this study, we assessed the impact of tryptophan supplementation on the formation of tryptophan metabolites, AhR activation, and microbiota composition in the simulator of the human intestinal microbial ecosystem (SHIME). AhR activation, microbial composition, and tryptophan metabolites were compared during high tryptophan supplementation (4 g/L tryptophan), control, and wash-out periods. During tryptophan supplementation, the concentration of several tryptophan metabolites was increased compared to the control and wash-out period, but AhR activation by fermenter supernatant was significantly decreased. This was due to the higher levels of tryptophan, which was found to be an antagonist of AhR signaling. Tryptophan supplementation induced most microbial changes in the transverse colon including increased relative abundance of lactobacillus. We conclude that tryptophan supplementation leads to increased formation of AhR agonists in the colon.


Assuntos
Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Triptofano , Suplementos Nutricionais , Humanos , Receptores de Hidrocarboneto Arílico/agonistas , Triptofano/farmacologia
11.
Food Chem ; 345: 128827, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33348132

RESUMO

The control of Maillard reaction in foods is important to preserve protein nutritional quality. In this study, we investigated the effects of melanoidins obtained from different roasted cocoa beans toward the formation of dietary advanced glycation end-products (d-AGEs) in aqueous solution of whey protein (WP) and glucose, glyoxal and methylglyoxal at 35 °C and pH 7.0. Cocoa melanoidins (4 mg/mL) were more effective to inhibit glyoxal-derived d-AGEs than methylglyoxal-derived d-AGEs, with 74.4% and 48% reduction of N-ε-carboxymethyllysine and methylglyoxal-hydroimidazolone formation in WP/glyoxal and WP/methylglyoxal system, respectively. Furthermore, protein-bound N-ε-fructosyllysine, measured through furosine, decreased down to 57.2% in presence of cocoa melanoidins in WP/glucose model system suggesting an effective control of the Maillard reaction in an early stage. These findings highlighted that cocoa melanoidins are functional ingredients able to mitigate protein glycation in dairy products during storage.


Assuntos
Cacau/química , Laticínios/análise , Dieta , Produtos Finais de Glicação Avançada/metabolismo , Polímeros/farmacologia , Glioxal/metabolismo , Aldeído Pirúvico/metabolismo
12.
Food Chem ; 349: 129018, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550020

RESUMO

Polyphenols bound to insoluble fibre may scavenge reactive carbonyl species by surface chemical reactions. In the present study, this hypothesis was tested by investigating the ability of bound-polyphenol rich insoluble dietary fibre (BP-IDF) isolated from blackberry pomace, red cabbage, and wheat bran in scavenging carbonyl compounds. Three BP-IDF showed high scavenging efficacy for glyoxal, methylglyoxal, acrolein and malondialdehyde. Upon in vitro digestion, trapping capacity was retained by the insoluble fraction suggesting that carbonyl trapping activity and physiological relevance needs to be extended to undigestible materials. The removal of bound polyphenols from the polysaccharide backbones through alkaline and acidic treatment reduced by up to 90% of trapping capacity of BP-IDF. Moreover, methylglyoxal-polyphenol adducts were detected bound to blackberry pomace BP-IDF after hydrolysis. These findings demonstrated that polyphenols bound to IDF scavenged reactive carbonyl species and highlighted the physiological relevance of BP-IDF in limiting carbonyl stress along all the gastrointestinal tract.


Assuntos
Fibras na Dieta/análise , Glioxal/química , Polifenóis/análise , Animais , Peixes , Halogenação , Aldeído Pirúvico/química , Rubus/química , Solubilidade
13.
Food Res Int ; 141: 110120, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641987

RESUMO

Proteolytic side activity of the lactase preparations (LPs) intended for ultra-high temperature hydrolyzed-lactose milk (UHLM) production induces changes in the product quality during shelf-life. The problem is particularly relevant when the enzyme is added aseptically in the packaging ("in pack" process), while the negative quality effects can be mitigated following the "in batch" process adding the LP before thermal sterilization. In this study, we monitored the quality over time of UHLM produced "in batch" and stored at 4, 20, 30 and 40 °C focusing on proteolysis, volatiles organic compounds (VOCs) formation and color changes. The goal was to identify the key reactions and compounds relevant for the product quality. An increase in storage temperature determined significant changes in the free amino acids profile increasing Strecker aldehydes and methyl ketones formation. At 30 and 40 °C, Maillard reaction and lipid oxidation ended up in a modification of the milk color, whereas at 4 and 20 °C no significant alteration was observed. Altogether, the results suggested a coordinate involvement of Maillard reaction, protein and lipid oxidation to milk browning and off-flavors formation in UHLM.


Assuntos
Lactose , Compostos Orgânicos Voláteis , Aminoácidos , Animais , Leite , Temperatura
14.
Nat Commun ; 12(1): 4798, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376656

RESUMO

We describe the anaerobic conversion of inositol stereoisomers to propionate and acetate by the abundant intestinal genus Anaerostipes. A inositol pathway was elucidated by nuclear magnetic resonance using [13C]-inositols, mass spectrometry and proteogenomic analyses in A. rhamnosivorans, identifying 3-oxoacid CoA transferase as a key enzyme involved in both 3-oxopropionyl-CoA and propionate formation. This pathway also allowed conversion of phytate-derived inositol into propionate as shown with [13C]-phytate in fecal samples amended with A. rhamnosivorans. Metabolic and (meta)genomic analyses explained the adaptation of Anaerostipes spp. to inositol-containing substrates and identified a propionate-production gene cluster to be inversely associated with metabolic biomarkers in (pre)diabetes cohorts. Co-administration of myo-inositol with live A. rhamnosivorans in western-diet fed mice reduced fasting-glucose levels comparing to heat-killed A. rhamnosivorans after 6-weeks treatment. Altogether, these data suggest a potential beneficial role for intestinal Anaerostipes spp. in promoting host health.


Assuntos
Acetatos/metabolismo , Clostridiales/metabolismo , Inositol/metabolismo , Intestinos/química , Propionatos/metabolismo , Animais , Clostridiales/classificação , Clostridiales/fisiologia , Dieta , Fezes/microbiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Intestinos/microbiologia , Espectroscopia de Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos C57BL , Ácido Fítico/metabolismo , Espectrometria de Massas em Tandem/métodos
15.
Food Chem ; 323: 126793, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32334301

RESUMO

The network of the Maillard reaction can be influenced by the presence of polyphenols. In this paper, we evaluated the ability of secoiridoids to interact with asparagine and lysine tuning the formation of dietary advanced glycation end-products (d-AGEs), dicarbonyls and acrylamide. Olive oil mill wastewater polyphenol powders (OMWP) were added to glucose and lysine or asparagine in silica model systems to mimic water activity present in cookies. Results revealed that acrylamide, Amadori compounds and N-ε-carboxyethyllysine (CEL) were reduced to 50%, after 13 min at 180 °C; for the reduction of N-ε-carboxymethyllysine (CML), secoiridoids were effective only in model systems with the addition of acacia fiber and maltodextrin as coating agents. In cookies, OMWP at three different concentrations decreased the concentration of protein bound Amadori compounds, CML, CEL and dicarbonyls. Acrylamide and 5-hydroxymethylfurfural were reduced to 60% and 76% respectively, highlighting the ability of secoiridoids-based functional ingredients in controlling d-AGEs formation.

16.
J Agric Food Chem ; 68(43): 12107-12115, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054194

RESUMO

In foods, the Maillard reaction (MR) and lipid oxidation lead to the formation of several molecules through interrelated chemical pathways. MR and lipid oxidation products were investigated in model oil-in-water emulsions consisting of canola oil, water, and Tween 20, a nonionic surfactant, with glucose and phenylalanine. The presence of 1% Tween 20, either in emulsion or as a control surfactant solution, sped up the formation of N-(1-deoxy-d-fructos-1-yl)-phenylalanine and of phenylacetaldehyde. Overall, the formation of MR products was up to sixteen times higher in emulsions than in an aqueous system without a surfactant. The formation of conjugated dienes, total aldehydes, hexanal, and (Z)-2-octenal was reduced down to six times when MR products were present in the emulsion. These results confirm that the formation of MR intermediates is influenced by the reactants' location, and the presence of a discrete nonpolar environment (oil droplets or surfactant micelles) promotes MR volatile formation through Strecker degradation.


Assuntos
Produtos Finais de Glicação Avançada/química , Lipídeos/química , Emulsões/química , Reação de Maillard , Oxirredução
17.
J Agric Food Chem ; 68(18): 5180-5188, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307992

RESUMO

The oil-water interface can be used as an efficient reaction controller in foods by carrying specific reactants and products in either the hydrophobic or hydrophilic phase. The formation of the taste-active compounds N-(1-carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine) and 1-(1-carboxyethyl)-3-hydroxy-pyridinium inner salt is influenced by the presence of a dispersed saturated triglyceride oil phase and by the pH of the aqueous phase. At pH 6.5, the formation of both betaines was 1.24 and 6 times higher in emulsions than in aqueous solution after 4 min at 140 °C. In alkaline emulsions (pH = 9.5, 4 min), the concentrations of alapyridaine and 1-(1-carboxyethyl)-3-hydroxy-pyridinium ion were 6.2 and 3.8 times higher, respectively, than in unbuffered emulsions as a result of the interaction between the polar head group of the surfactant and pyridinium rings. Here, we reported for the first time the effects of multiphase systems on the formation of nonvolatile, taste-active end products.


Assuntos
Betaína/química , Emulsões/química , Compostos de Piridínio/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tensoativos/química
18.
RSC Adv ; 10(36): 21535-21544, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35518766

RESUMO

Reducing the concentration of reactive carbonyl species (RCS) in e-cigarette emissions represents a major goal to control their potentially harmful effects. Here, we adopted a novel strategy of trapping carbonyls present in e-cigarette emissions by adding polyphenols in e-liquid formulations. Our work showed that the addition of gallic acid, hydroxytyrosol and epigallocatechin gallate reduced the levels of carbonyls formed in the aerosols of vaped e-cigarettes, including formaldehyde, methylglyoxal and glyoxal. Liquid chromatography mass spectrometry analysis highlighted the formation of covalent adducts between aromatic rings and dicarbonyls in both e-liquids and vaped samples, suggesting that dicarbonyls were formed in the e-liquids as degradation products of propylene glycol and glycerol before vaping. Short-term cytotoxic analysis on two lung cellular models showed that dicarbonyl-polyphenol adducts are not cytotoxic, even though carbonyl trapping did not improve cell viability. Our work sheds lights on the ability of polyphenols to trap RCS in high carbonyl e-cigarette emissions, suggesting their potential value in commercial e-liquid formulations.

19.
Front Microbiol ; 11: 1364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719661

RESUMO

Many Trichoderma spp. are successful plant beneficial microbial inoculants due to their ability to act as biocontrol agents with direct antagonistic activities to phytopathogens, and as biostimulants capable of promoting plant growth. This work investigated the effects of treatments with three selected Trichoderma strains (T22, TH1, and GV41) to strawberry plants on the productivity, metabolites and proteome of the formed fruits. Trichoderma applications stimulated plant growth, increased strawberry fruit yield, and favored selective accumulation of anthocyanins and other antioxidants in red ripened fruits. Proteomic analysis of fruits harvested from the plants previously treated with Trichoderma demonstrated that the microbial inoculants highly affected the representation of proteins associated with responses to stress/external stimuli, nutrient uptake, protein metabolism, carbon/energy metabolism and secondary metabolism, also providing a possible explanation to the presence of specific metabolites in fruits. Bioinformatic analysis of these differential proteins revealed a central network of interacting molecular species, providing a rationale to the concomitant modulation of different plant physiological processes following the microbial inoculation. These findings indicated that the application of Trichoderma-based products exerts a positive impact on strawberry, integrating well with previous observations on the molecular mechanisms activated in roots and leaves of other tested plant species, demonstrating that the efficacy of using a biological approach with beneficial microbes on the maturing plant is also able to transfer advantages to the developing fruits.

20.
J Agric Food Chem ; 68(27): 7246-7258, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32426974

RESUMO

Fungi of the genus Trichoderma produce secondary metabolites having several biological activities that affect plant metabolism. We examined the effect of three Trichoderma bioactive metabolites (BAMs), namely, 6-pentyl-α-pyrone (6PP), harzianic acid (HA), and hydrophobin 1 (HYTLO1), on yield, fruit quality, and protein representation of strawberry plants. In particular, 6PP and HA increased the plant yield and number of fruits, when compared to control, while HYTLO1 promoted the growth of the roots and increased the total soluble solids content up to 19% and the accumulation of ascorbic acid and cyanidin 3-O-glucoside in red ripened fruits. Proteomic analysis showed that BAMs influenced the representation of proteins associated with the protein metabolism, response to stress/external stimuli, vesicle trafficking, carbon/energy, and secondary metabolism. Results suggest that the application of Trichoderma BAMs affects strawberry plant productivity and fruit quality and integrate previous observations on deregulated molecular processes in roots and leaves of Trichoderma-treated plants with original data on fruits.


Assuntos
Fragaria/efeitos dos fármacos , Frutas/química , Trichoderma/química , Antocianinas/análise , Antocianinas/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Fragaria/química , Fragaria/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Hidroxibutiratos/farmacologia , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Pironas/farmacologia , Pirróis/farmacologia , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA