Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Genet ; 46(3): 183-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18930999

RESUMO

INTRODUCTION: Mutations in the voltage-gated sodium channel SCN1A gene are the main genetic cause of Dravet syndrome (previously called severe myoclonic epilepsy of infancy or SMEI). OBJECTIVE: To characterise in more detail the mutation spectrum associated with Dravet syndrome. METHODS: A large series of 333 patients was screened using both direct sequencing and multiplex ligation-dependent probe amplification (MLPA). Non-coding regions of the gene that are usually not investigated were also screened. RESULTS: SCN1A point mutations were identified in 228 patients, 161 of which had not been previously reported. Missense mutations, either (1) altering a highly conserved amino acid of the protein, (2) transforming this conserved residue into a chemically dissimilar amino acid and/or (3) belonging to ion-transport sequences, were the most common mutation type. MLPA analysis of the 105 patients without point mutation detected a heterozygous microrearrangement of SCN1A in 14 additional patients; 8 were private, partial deletions and six corresponded to whole gene deletions, 0.15-2.9 Mb in size, deleting nearby genes. Finally, mutations in exon 5N and in untranslated regions of the SCN1A gene that were conserved during evolution were excluded in the remaining negative patients. CONCLUSION: These findings widely expand the SCN1A mutation spectrum identified and highlight the importance of screening the coding regions with both direct sequencing and a quantitative method. This mutation spectrum, including whole gene deletions, argues in favour of haploinsufficiency as the main mechanism responsible for Dravet syndrome.


Assuntos
Epilepsias Mioclônicas/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Feminino , Deleção de Genes , Rearranjo Gênico , Humanos , Lactente , Recém-Nascido , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1 , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência de DNA
2.
J Med Genet ; 44(7): 452-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17400790

RESUMO

BACKGROUND: Chromosomal rearrangements, arising from unequal recombination between repeated sequences, are found in a subset of patients with autism. Duplications involving loci associated with behavioural disturbances constitute an especially good candidate mechanism. The Williams-Beuren critical region (WBCR), located at 7q11.23, is commonly deleted in Williams-Beuren microdeletion syndrome (WBS). However, only four patients with a duplication of the WBCR have been reported to date: one with severe language delay and the three others with variable developmental, psychomotor and language delay. OBJECTIVE AND METHODS: In this study, we screened 206 patients with autism spectrum disorders for the WBCR duplication by quantitative microsatellite analysis and multiple ligation-dependent probe amplification. RESULTS: We identified one male patient with a de novo interstitial duplication of the entire WBCR of paternal origin. The patient had autistic disorder, severe language delay and mental retardation, with very mild dysmorphic features. CONCLUSION: We report the first patient with autistic disorder and a WBCR duplication. This observation indicates that the 7q11.23 duplication could be involved in complex clinical phenotypes, ranging from developmental or language delay to mental retardation and autism, and extends the phenotype initially reported. These findings also support the existence of one or several genes in 7q11.23 sensitive to gene dosage and involved in the development of language and social interaction.


Assuntos
Transtorno Autístico/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 7/genética , Duplicação Gênica , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Humanos , Hibridização in Situ Fluorescente , Masculino , Repetições de Microssatélites/genética , Técnicas de Sonda Molecular , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase
3.
BMJ Case Rep ; 20092009.
Artigo em Inglês | MEDLINE | ID: mdl-21686962

RESUMO

Chromosomal rearrangements are found in a subset of patients with autism. Duplications involving loci associated with behavioural disturbances constitute an especially good candidate mechanism. The Williams-Beuren critical region (WBCR), located at 7q11.23, is commonly deleted in Williams-Beuren microdeletion syndrome (WBS). However, only four patients with a duplication of the WBCR have been reported to date. Here, 206 patients with autism spectrum disorders were screened for the WBCR duplication by quantitative microsatellite analysis and multiple ligation-dependent probe amplification. One male patient with a de novo interstitial duplication of the entire WBCR of paternal origin was identified. The patient had autistic disorder, severe language delay and mental retardation, with mild dysmorphism. The present report concerns the first patient with autistic disorder and a WBCR duplication. This observation indicates that the 7q11.23 duplication could be involved in complex clinical phenotypes, ranging from developmental or language delay to mental retardation and autism.

4.
Neurology ; 72(13): 1178-83, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19332696

RESUMO

OBJECTIVE: Familial hemiplegic migraine (FHM) is a genetically heterogeneous disorder in which three genes, CACNA1A, ATP1A2, and SCN1A, are currently known to be involved. FHM is occasionally associated with other neurologic symptoms such as cerebellar ataxia or epileptic seizures. A unique eye phenotype of elicited repetitive daily blindness (ERDB) has also been reported to be cosegregating with FHM in a single Swiss family. METHODS: We report an additional family in whom the proband had, in addition to FHM, typical ERDB. In this family and the previously reported Swiss family, the whole coding region of the SCN1A gene was screened after exclusion of mutation in CACNA1A and ATP1A2 genes. RESULTS: We identified two novel SCN1A mutations (c.4495T>C/p.Phe1499Leu and c.4467G>C/p.Gln1489His missense substitutions) in exons 24 and 23, respectively, segregating with the disease in all living affected members. Both mutations were absent from 180 healthy Caucasian controls and were located in an intracellular loop highly conserved throughout evolution. CONCLUSION: We report new clinical data supporting cosegregation of familial hemiplegic migraine and the new eye phenotype of elicited repetitive daily blindness and two novel SCN1A mutations as the underlying genetic defect in two unrelated families. SCN1A encodes the voltage-gated sodium channel Nav1.1 that is highly expressed in the CNS including the retina. This remarkably stereotyped new eye phenotype has clinical characteristics of abnormal propagation of the retinal electrical signal that may be a retinal spreading depression. These results suggest that SCN1A mutations, which alter neuronal brain excitability, may occasionally alter retinal cell excitability.


Assuntos
Amaurose Fugaz/genética , Ritmo Circadiano/genética , Enxaqueca com Aura/genética , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Canais de Sódio/genética , Adolescente , Amaurose Fugaz/complicações , Sequência de Aminoácidos , Feminino , Humanos , Masculino , Enxaqueca com Aura/complicações , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.1 , Linhagem , Recidiva , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA