RESUMO
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.
Assuntos
Tratamento Farmacológico da COVID-19 , DNA Topoisomerases Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Animais , COVID-19/enzimologia , COVID-19/patologia , Chlorocebus aethiops , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/patologia , Inflamação/virologia , Mesocricetus , Camundongos , Camundongos Transgênicos , Células THP-1 , Células VeroRESUMO
In March 2024, highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b H5N1 infections in dairy cows were first reported from Texas, USA1. Rapid dissemination to more than 190 farms in 13 states followed2. Here, we provide results of two independent clade 2.3.4.4b experimental infection studies evaluating (i) oronasal susceptibility and transmission in calves to a US H5N1 bovine isolate genotype B3.13 (H5N1 B3.13) and (ii) susceptibility of lactating cows following direct mammary gland inoculation of either H5N1 B3.13 or a current EU H5N1 wild bird isolate genotype euDG (H5N1 euDG). Inoculation of the calves resulted in moderate nasal replication and shedding with no severe clinical signs or transmission to sentinel calves. In dairy cows, infection resulted in no nasal shedding, but severe acute mammary gland infection with necrotizing mastitis and high fever was observed for both H5N1 isolates. Milk production was rapidly and drastically reduced and the physical condition of the cows was severely compromised. Virus titers in milk rapidly peaked at 108 TCID50/mL, but systemic infection did not ensue. Notably, adaptive mutation PB2 E627K emerged after intramammary replication of H5N1 euDG. Our data suggest that in addition to H5N1 B3.13, other HPAIV H5N1 strains have the potential to replicate in the udder of cows and that milk and milking procedures, rather than respiratory spread, are likely the primary routes of H5N1 transmission between cattle.
RESUMO
Rift Valley Fever phlebovirus (RVFV) is a mosquito-borne zoonotic pathogen that causes major agricultural and public health problems in Africa and the Arabian Peninsula. It is considered a potential agro-bioterrorism agent for which limited countermeasures are available. To address diagnostic needs, here we describe a rapid and sensitive molecular method immediately employable at sites of suspected outbreaks in animals that commonly precede outbreaks in humans. The strategy involves the concurrent detection of two of the three RVFV genome segments (large and medium) using reverse transcription insulated isothermal PCR (RT-iiPCR) performed on a portable, touch screen nucleic acid analyzer, POCKIT. The analytical sensitivity for both the RT-iiPCR and a laboratory-based L and M multiplex reverse transcription real-time PCR assay was estimated at approximately 0.1-3 copies/reaction using synthetic RNA or viral RNA. The diagnostic sensitivity and specificity of detection of RVFV on the POCKIT, determined using sera from sheep and cattle (n = 181) experimentally infected with two strains of RVFV (SA01 and Ken06), were 93.8% and 100% (kappa = 0.93), respectively. Testing of ruminant field sera (n = 193) in two locations in Africa demonstrated 100% diagnostic sensitivity and specificity. We conclude that the POCKIT dual-gene RVFV detection strategy can provide reliable, sensitive, and specific point-of-need viral RNA detection. Moreover, the field detection of RVFV in vectors or susceptible animal species can aid in the surveillance and epidemiological studies to better understand and control RVFV outbreaks. IMPORTANCE: The content of this manuscript is of interest to the diverse readership of the Journal of Clinical Microbiology, including research scientists, diagnosticians, healthcare professionals, and policymakers. Rift Valley Fever virus (RVFV) is a zoonotic mosquito-borne pathogen that causes major agricultural and public health problems. Current and most sensitive diagnostic approaches that are molecular-based are performed in highly specialized molecular diagnostic laboratories. To address diagnostic needs, we developed a novel, rapid, and sensitive molecular method using a portable PCR machine, POCKIT, capable of immediate deployment at sites of suspected outbreaks. Here, we demonstrate that field-deployable RVFV detection can provide reliable, sensitive, and specific point-of-need viral RNA detection that could be used for diagnostic investigations and epidemiological studies, and can be performed in the field.
Assuntos
Vírus da Febre do Vale do Rift , Humanos , Bovinos , Ovinos/genética , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa , Laboratórios , RNA ViralRESUMO
The recent expansion of HPAIV H5N1 infections in terrestrial mammals in the Americas, most recently including the outbreak in dairy cattle, emphasizes the critical need for better epidemiological monitoring of zoonotic diseases. In this work, we detected, isolated, and characterized the HPAIV H5N1 from environmental swab samples collected from a dairy farm in the state of Kansas, USA. Genomic sequencing of these samples uncovered two distinctive substitutions in the PB2 (E249G) and NS1 (R21Q) genes which are rare and absent in recent 2024 isolates of H5N1 circulating in the mammalian and avian species. Additionally, approximately 1.7% of the sequence reads indicated a PB2 (E627K) substitution, commonly associated with virus adaptation to mammalian hosts. Phylogenetic analyses of the PB2 and NS genes demonstrated more genetic identity between this environmental isolate and the 2024 human isolate (A/Texas/37/2024) of H5N1. Conversely, HA and NA gene analyses revealed a closer relationship between our isolate and those found in other dairy cattle with almost 100% identity, sharing a common phylogenetic subtree. These findings underscore the rapid evolutionary progression of HPAIV H5N1 among dairy cattle and reinforces the need for more epidemiological monitoring which can be done using environmental sampling.
Assuntos
Fazendas , Virus da Influenza A Subtipo H5N1 , Filogenia , Animais , Bovinos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/classificação , Kansas , Humanos , Indústria de Laticínios , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologiaRESUMO
Vesicular stomatitis (VS) is a notifiable disease of livestock affecting cattle, horses, pigs and humans. Vesicular stomatitis virus (VSV) serotypes Indiana and New Jersey are endemic to Central America; however, they also cause sporadic and scattered outbreaks in various countries in South and North America, including the USA. In order to develop an effective experimental challenge model for VSV, we compared the pathogenicity of three VSV serotype Indiana isolates in 36 4-5 week-old pigs. Two bovine isolates of Central American origin and one equine isolate from the USA were used for the experimental infections. Each pig was inoculated with a single isolate by both the intradermal and intranasal routes. Clinical signs of VSV infection were recorded daily for 10 days post-inoculation (days p.i.). Nasal and tonsillar swab samples and blood were collected to monitor immune responses, virus replication and shedding. Post-challenge, characteristic signs of VS were observed, including vesicles on the nasal planum and coronary bands, lameness, loss of hoof walls and pyrexia. Pigs inoculated with the Central American isolates showed consistently more severe clinical signs in comparison to the pigs infected with the USA isolate. Genomic RNA was isolated from the original challenge virus stocks, sequenced and compared to VSV genomes available in GenBank. Comparative genome analysis demonstrated significant differences between the VSV isolate from the USA and the two Central American isolates. Our results indicate that the Central American isolates of VSV serotype Indiana used in this study are more virulent in swine than the USA VSV serotype Indiana isolate and represent good candidate challenge strains for future VSV studies.
Assuntos
Modelos Animais de Doenças , Estomatite Vesicular/patologia , Estomatite Vesicular/virologia , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/patogenicidade , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Sangue/virologia , Sorogrupo , Suínos , Vesiculovirus/classificação , Virulência , Replicação Viral , Eliminação de Partículas ViraisRESUMO
Rift Valley fever virus, a zoonotic arbovirus, poses major health threats to livestock and humans if introduced into the United States. White-tailed deer, which are abundant throughout the country, might be sentinel animals for arboviruses. We determined the susceptibility of these deer to this virus and provide evidence for a potentially major epidemiologic role.
Assuntos
Cervos , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Animais , Animais Selvagens , Masculino , Virulência , Zoonoses/prevenção & controleRESUMO
Rift Valley fever (RVF) is a zoonotic viral disease that affects domestic and wild ruminants such as cattle, sheep, goats, camels, and buffaloes. Rift valley fever virus (RVFV), the causative agent of RVF, can also infect humans. RVFV is an arthropod-borne virus (arbovirus) that is primarily spread through the bites of infected mosquitoes or exposure to infected blood. RVFV was first isolated and characterized in the Rift Valley of Kenya in 1931 and is endemic throughout sub-Saharan Africa, including Comoros and Madagascar, the Arabian Peninsula (Saudi Arabia and Yemen), and Mayotte.
Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Vírus da Febre do Vale do Rift/isolamento & purificação , Humanos , Zoonoses , Ruminantes/virologia , OvinosRESUMO
A wide range of animal species show variable susceptibility to SARS-CoV-2; however, host factors associated with varied susceptibility remain to be defined. Here, we examined whether susceptibility to SARS-CoV-2 and virus tropism in different animal species are dependent on the expression and distribution of the virus receptor angiotensin-converting enzyme 2 (ACE2) and the host cell factor transmembrane serine protease 2 (TMPRSS2). We cataloged the upper and lower respiratory tract of multiple animal species and humans in a tissue-specific manner and quantitatively evaluated the distribution and abundance of ACE2 and TMPRSS2 mRNA in situ. Our results show that: (i) ACE2 and TMPRSS2 mRNA are abundant in the conduction portion of the respiratory tract, (ii) ACE2 mRNA occurs at a lower abundance compared to TMPRSS2 mRNA, (iii) co-expression of ACE2-TMPRSS2 mRNAs is highest in those species with the highest susceptibility to SARS-CoV-2 infection (i.e., cats, Syrian hamsters, and white-tailed deer), and (iv) expression of ACE2 and TMPRSS2 mRNA was not altered following SARS-CoV-2 infection. Our results demonstrate that while specific regions of the respiratory tract are enriched in ACE2 and TMPRSS2 mRNAs in different animal species, this is only a partial determinant of susceptibility to SARS-CoV-2 infection.IMPORTANCESARS-CoV-2 infects a wide array of domestic and wild animals, raising concerns regarding its evolutionary dynamics in animals and potential for spillback transmission of emerging variants to humans. Hence, SARS-CoV-2 infection in animals has significant public health relevance. Host factors determining animal susceptibility to SARS-CoV-2 are vastly unknown, and their characterization is critical to further understand susceptibility and viral dynamics in animal populations and anticipate potential spillback transmission. Here, we quantitatively assessed the distribution and abundance of the two most important host factors, angiotensin-converting enzyme 2 and transmembrane serine protease 2, in the respiratory tract of various animal species and humans. Our results demonstrate that while specific regions of the respiratory tract are enriched in these two host factors, they are only partial determinants of susceptibility. Detailed analysis of additional host factors is critical for our understanding of the underlying mechanisms governing viral susceptibility and reservoir hosts.
Assuntos
COVID-19 , Cervos , Humanos , Animais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Sistema Respiratório , RNA Mensageiro , Tropismo , Serina EndopeptidasesRESUMO
Rift Valley fever (RVF) in ungulates and humans is caused by a mosquito-borne RVF phlebovirus (RVFV). Live attenuated vaccines are used in livestock (sheep and cattle) to control RVF in endemic regions during outbreaks. The ability of two or more different RVFV strains to reassort when co-infecting a host cell is a significant veterinary and public health concern due to the potential emergence of newly reassorted viruses, since reassortment of RVFVs has been documented in nature and in experimental infection studies. Due to the very limited information regarding the frequency and dynamics of RVFV reassortment, we evaluated the efficiency of RVFV reassortment in sheep, a natural host for this zoonotic pathogen. Co-infection experiments were performed, first in vitro in sheep-derived cells, and subsequently in vivo in sheep. Two RVFV co-infection groups were evaluated: group I consisted of co-infection with two wild-type (WT) RVFV strains, Kenya 128B-15 (Ken06) and Saudi Arabia SA01-1322 (SA01), while group II consisted of co-infection with the live attenuated virus (LAV) vaccine strain MP-12 and a WT strain, Ken06. In the in vitro experiments, the virus supernatants were collected 24 h post-infection. In the in vivo experiments, clinical signs were monitored, and blood and tissues were collected at various time points up to nine days post-challenge for analyses. Cell culture supernatants and samples from sheep were processed, and plaque-isolated viruses were genotyped to determine reassortment frequency. Our results show that RVFV reassortment is more efficient in co-infected sheep-derived cells compared to co-infected sheep. In vitro, the reassortment frequencies reached 37.9% for the group I co-infected cells and 25.4% for the group II co-infected cells. In contrast, we detected just 1.7% reassortant viruses from group I sheep co-infected with the two WT strains, while no reassortants were detected from group II sheep co-infected with the WT and LAV strains. The results indicate that RVFV reassortment occurs at a lower frequency in vivo in sheep when compared to in vitro conditions in sheep-derived cells. Further studies are needed to better understand the implications of RVFV reassortment in relation to virulence and transmission dynamics in the host and the vector. The knowledge learned from these studies on reassortment is important for understanding the dynamics of RVFV evolution.
Assuntos
Vírus Reordenados , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Animais , Ovinos , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/virologia , Vírus Reordenados/genética , Doenças dos Ovinos/virologia , Coinfecção/virologia , Coinfecção/veterinária , Vacinas Atenuadas/genética , Vacinas Virais/imunologia , Vacinas Virais/genética , Anticorpos Antivirais/sangueRESUMO
ABSTRACTRapid evolution of highly pathogenic avian influenza viruses (HPAIVs) is driven by antigenic drift but also by reassortment, which might result in robust replication in and transmission to mammals. Recently, spillover of clade 2.3.4.4b HPAIV to mammals including humans, and their transmission between mammalian species has been reported. This study aimed to evaluate the pathogenicity and transmissibility of a mink-derived clade 2.3.4.4b H5N1 HPAIV isolate from Spain in pigs. Experimental infection caused interstitial pneumonia with necrotizing bronchiolitis with high titers of virus present in the lower respiratory tract and 100% seroconversion. Infected pigs shed limited amount of virus, and importantly, there was no transmission to contact pigs. Notably, critical mammalian-like adaptations such as PB2-E627 K and HA-Q222L emerged at low frequencies in principal-infected pigs. It is concluded that pigs are highly susceptible to infection with the mink-derived clade 2.3.4.4b H5N1 HPAIV and provide a favorable environment for HPAIV to acquire mammalian-like adaptations.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vison , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Vison/virologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Suínos , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , Espanha , Proteínas Virais/genética , Proteínas Virais/metabolismo , Eliminação de Partículas ViraisRESUMO
African swine fever (ASF) is a highly contagious diseases in domestic pigs and wild boars with up to 100% mortality. ASF virus (ASFV) is a causative agent responsible for ASF and highly resistant in environments, which creates a significant challenge for the control and eradication of the virus. Despite the geographical expansion of ASFV and international movement of products to sustain the swine production system, there is limited knowledge on the use of environmental samples to perform surveillance to prevent the introduction of ASFV into ASFV-free areas and for control of transmission in affected areas. Therefore, this study aimed to develop and optimize sampling techniques for environmental samples for ASFV detection. The stainless steel surfaces were contaminated with ASFV-infected blood, swabbed using different devices, and then processed through different techniques. The environmental samples were processed and tested using qPCR analysis. The results showed that the use of pre-moistened gauze surgical sponges, sweeping pads, and sponge sticks resulted in increased sensitivity, when compared to either dry sampling devices or Dacron swab. In particular, the combination of the sponge stick and the commercial nucleic acid preservative supported the best detection of ASFV DNA on the clean stainless steel surfaces evaluated. Pre-incubation for the short period of time and centrifugation at low speed were sufficient to provide satisfactory diagnostic sensitivity of ASFV detection using qPCR for environmental samples. Our findings contribute to the development of techniques for environmental samples for ASFV surveillance to prevent the introduction and dissemination of ASFV.
RESUMO
Monkeypox virus (MPXV) is a re-emerging zoonotic poxvirus responsible for producing skin lesions in humans. Endemic in sub-Saharan Africa, the 2022 outbreak with a clade IIb strain has resulted in ongoing sustained transmission of the virus worldwide. MPXV has a relatively wide host range, with infections reported in rodent and non-human primate species. However, the susceptibility of many domestic livestock species remains unknown. Here, we report on a susceptibility/transmission study in domestic pigs that were experimentally inoculated with a 2022 MPXV clade IIb isolate or served as sentinel contact control animals. Several principal-infected and sentinel contact control pigs developed minor lesions near the lips and nose starting at 12 through 18 days post-challenge (DPC). No virus was isolated and no viral DNA was detected from the lesions; however, MPXV antigen was detected by IHC in tissue from a pustule of a principal infected pig. Viral DNA and infectious virus were detected in nasal and oral swabs up to 14 DPC, with peak titers observed at 7 DPC. Viral DNA was also detected in nasal tissues or skin collected from two principal-infected animals at 7 DPC post-mortem. Furthermore, all principal-infected and sentinel control animals enrolled in the study seroconverted. In conclusion, we provide the first evidence that domestic pigs are susceptible to experimental MPXV infection and can transmit the virus to contact animals.
Assuntos
Monkeypox virus , Mpox , Doenças dos Suínos , Animais , Monkeypox virus/fisiologia , Monkeypox virus/patogenicidade , Monkeypox virus/genética , Suínos , Mpox/transmissão , Mpox/virologia , Mpox/veterinária , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , DNA Viral/genética , Anticorpos Antivirais/sangue , Humanos , Pele/virologia , Nariz/virologiaRESUMO
The African swine fever virus (ASFV) causes fatal disease in pigs and is currently spreading globally. Commercially safe vaccines are urgently required. Aiming to generate a novel live attenuated vaccine (LAV), a recombinant ASFV was generated by deleting the viral O174L (PolX) gene. However, during in vitro generation, an additional spontaneous deletion of genes belonging to the multigene families (MGF) occurred, creating a mixture of two viruses, namely, Arm-ΔPolX and Arm-ΔPolX-ΔMGF. This mixture was used to inoculate pigs in a low and high dose to assess the viral dynamics of both populations in vivo. Although the Arm-ΔPolX population was a much lower proportion of the inoculum, in the high-dose immunized animals, it was the only resulting viral population, while Arm-ΔPolX-ΔMGF only appeared in low-dose immunized animals, revealing the role of deleted MGFs in ASFV fitness in vivo. Furthermore, animals in the low-dose group survived inoculation, whereas animals in the high-dose group died, suggesting that the lack of MGF and PolX genes, and not the PolX gene alone, led to attenuation. The two recombinant viruses were individually isolated and inoculated into piglets, confirming this hypothesis. However, immunization with the Arm-ΔPolX-ΔMGF virus did not induce protection against challenge with the virulent parental ASFV strain. This study demonstrates that deletion of the PolX gene alone neither leads to attenuation nor induces an increased mutation rate in vivo.
RESUMO
Since emerging in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has repeatedly crossed the species barrier with natural infections reported in various domestic and wild animal species. The emergence and global spread of SARS-CoV-2 variants of concern (VOCs) has expanded the range of susceptible host species. Previous experimental infection studies in cattle using Wuhan-like SARS-CoV-2 isolates suggested that cattle were not likely amplifying hosts for SARS-CoV-2. However, SARS-CoV-2 sero- and RNA-positive cattle have since been identified in Europe, India, and Africa. Here, we investigated the susceptibility and transmission of the Delta and Omicron SARS-CoV-2 VOCs in cattle. Eight Holstein calves were co-infected orally and intranasally with a mixed inoculum of SARS-CoV-2 VOCs Delta and Omicron BA.2. Twenty-four hours post-challenge, two sentinel calves were introduced to evaluate virus transmission. The co-infection resulted in a high proportion of calves shedding SARS-CoV-2 RNA at 1- and 2-days post-challenge (DPC). Extensive tissue distribution of SARS-CoV-2 RNA was observed at 3 and 7 DPC and infectious virus was recovered from two calves at 3 DPC. Next-generation sequencing revealed that only the SARS-CoV-2 Delta variant was detected in clinical samples and tissues. Similar to previous experimental infection studies in cattle, we observed only limited seroconversion and no clear evidence of transmission to sentinel calves. Together, our findings suggest that cattle are more permissive to infection with SARS-CoV-2 Delta than Omicron BA.2 and Wuhan-like isolates but, in the absence of horizontal transmission, are not likely to be reservoir hosts for currently circulating SARS-CoV-2 variants.
Assuntos
COVID-19 , Coinfecção , Animais , Bovinos , COVID-19/veterinária , Coinfecção/veterinária , RNA Viral/genética , SARS-CoV-2/genéticaRESUMO
In March 2024, highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b H5N1 infections in dairy cows were first reported from Texas, USA. Rapid dissemination to more than 190 farms in 13 states followed. Here, we provide results of two independent clade 2.3.4.4b experimental infection studies evaluating (i) oronasal susceptibility and transmission in calves to a US H5N1 bovine isolate genotype B3.13 (H5N1 B3.13) and (ii) susceptibility of lactating cows following direct mammary gland inoculation of either H5N1 B3.13 or a current EU H5N1 wild bird isolate genotype euDG (H5N1 euDG). Inoculation of the calves resulted in moderate nasal replication and shedding with no severe clinical signs or transmission to sentinel calves. In dairy cows, infection resulted in no nasal shedding, but severe acute mammary gland infection with necrotizing mastitis and high fever was observed for both H5N1 genotypes/strains. Milk production was rapidly and drastically reduced and the physical condition of the cows was severely compromised. Virus titers in milk rapidly peaked at 108 TCID50/mL, but systemic infection did not ensue. Notably, adaptive mutation PB2 E627K emerged after intramammary replication of H5N1 euDG. Our data suggest that in addition to H5N1 B3.13, other HPAIV H5N1 strains have the potential to replicate in the udder of cows and that milk and milking procedures, rather than respiratory spread, are likely the primary routes of H5N1 transmission between cattle.
RESUMO
African swine fever (ASF) causes fatal disease in pigs and is an escalating threat to the global swine industry. ASF has re-emerged from Africa as a transcontinental epidemic spreading through the Caucasus into Europe, Russia, China, numerous Asian countries, and the Caribbean. ASF virus (ASFV) is a U.S. select agent requiring handling in high-containment biosafety level 3 (BSL-3) laboratories for pathogen work. Formalin-fixation eliminates infectivity and preserves the genome, providing noninfectious specimens for BSL-2 work. Recovery of DNA from formalin-fixed, paraffin-embedded tissue (FFPET) is challenging and cumbersome. A reliable and easy-to-perform method for DNA recovery from FFPET would facilitate surveillance. To meet this objective, we developed a high-throughput protocol for the recovery of ASFV DNA from FFPET. Deparaffinization, tissue lysis, and reversal of cross-linking were performed in a single tube, followed by DNA purification via automated magnetic bead extraction. Quantitative PCR (qPCR) detection was used to determine the copy number of the B646L gene that encodes for the ASFV p72 protein in tissues (5 pigs, 4 tissues) from pigs with lesions consistent with acute ASF. Copy numbers obtained from FFPET were within one log of copy numbers obtained from fresh tissue, thus enabling ASF qPCR surveillance from formalin-inactivated and preserved tissues at BSL-2 at diagnostic sensitivity similar to fresh tissues tested at BSL-3.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Inclusão em Parafina/veterinária , Reação em Cadeia da Polimerase/veterinária , Formaldeído , Doenças dos Suínos/diagnósticoRESUMO
Rift Valley fever phlebovirus (RVFV) is an emerging, mosquito-borne, zoonotic pathogen. Real time RT-qPCR genotyping (GT) assays were developed to differentiate between two RVFV wild-type strains (128B-15 and SA01-1322) and a vaccine strain (MP-12). The GT assay uses a one-step RT-qPCR mix, with two different RVFV strain-specific primers (either forward or reverse) with long or short G/C tags and a common primer (either forward or reverse) for each of the 3 genomic segments. The GT assay produces PCR amplicons with unique melting temperatures that are resolved in a post PCR melt curve analysis for strain identification. Furthermore, a strain specific RT-qPCR (SS-PCR) assay was developed to allow for specific detection of low titer RVFV strains in mixed RVFV samples. Our data shows that the GT assays are capable of differentiating L, M, and S segments of RVFV strains 128B-15 versus MP-12, and 128B-15 versus SA01-1322. The SS-PCR assay results revealed that it can specifically amplify and detect a low titer MP-12 strain in mixed RVFV samples. Overall, these two novel assays are useful as screening tools for determining reassortment of the segmented RVFV genome during co-infections, and could be adapted and applied for other segmented pathogens of interest.
Assuntos
Phlebovirus , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/genética , Genótipo , Reação em Cadeia da PolimeraseRESUMO
Introduction: African swine fever virus (ASFV) is a pathogen of great economic importance given that continues to threaten the pork industry worldwide, but there is no safe vaccine or treatment available. Development of a vaccine is feasible as immunization of pigs with some live attenuated ASFV vaccine candidates can confer protection, but safety concerns and virus scalability are challenges that must to be addressed. Identification of protective ASFV antigens is needed to inform the development of efficacious subunit vaccines. Methods: In this study, replication-incompetent adenovirus-vectored multicistronic ASFV antigen expression constructs that covered nearly 100% of the ASFV proteome were generated and validated using ASFV convalescent serum. Swine were immunized with a cocktail of the expression constructs, designated Ad5-ASFV, alone or formulated with either Montanide ISA-201™ (ASFV-ISA-201) or BioMize® adjuvant (ASFV-BioMize). Results: These constructs primed strong B cell responses as judged by anti-pp62-specific IgG responses. Notably, the Ad5-ASFV and the Ad5-ASFV ISA-201, but not the Ad5-ASFV BioMize®, immunogens primed significantly (p < 0.0001) higher anti-pp62-specific IgG responses compared with Ad5-Luciferase formulated with Montanide ISA-201™ adjuvant (Luc-ISA-201). The anti-pp62-specific IgG responses underwent significant (p < 0.0001) recall in all the vaccinees after boosting and the induced antibodies strongly recognized ASFV (Georgia 2007/1)-infected primary swine cells. However, following challenge by contact spreaders, only one pig nearly immunized with the Ad5-ASFV cocktail survived. The survivor had no typical clinical symptoms, but had viral loads and lesions consistent with chronic ASF. Discussion: Besides the limited sample size used, the outcome suggests that in vivo antigen expression, but not the antigen content, might be the limitation of this immunization approach as the replication-incompetent adenovirus does not amplify in vivo to effectively prime and expand protective immunity or directly mimic the gene transcription mechanisms of attenuated ASFV. Addressing the in vivo antigen delivery limitations may yield promising outcomes.
RESUMO
The objective of this work was to evaluate the safety and efficacy of a recombinant, subunit SARS-CoV-2 animal vaccine in cats against virulent SARS-CoV-2 challenge. Two groups of cats were immunized with two doses of either a recombinant SARS-CoV-2 spike protein vaccine or a placebo, administered three weeks apart. Seven weeks after the second vaccination, both groups of cats were challenged with SARS-CoV-2 via the intranasal and oral routes simultaneously. Animals were monitored for 14 days post-infection for clinical signs and viral shedding before being humanely euthanized and evaluated for macroscopic and microscopic lesions. The recombinant SARS-CoV-2 spike protein subunit vaccine induced strong serologic responses post-vaccination and significantly increased neutralizing antibody responses post-challenge. A significant difference in nasal and oral viral shedding, with significantly reduced virus load (detected using RT-qPCR) was observed in vaccinates compared to mock-vaccinated controls. Duration of nasal, oral, and rectal viral shedding was also significantly reduced in vaccinates compared to controls. No differences in histopathological lesion scores were noted between the two groups. Our findings support the safety and efficacy of the recombinant spike protein-based SARS-CoV-2 vaccine which induced high levels of neutralizing antibodies and reduced nasal, oral, and rectal viral shedding, indicating that this vaccine will be efficacious as a COVID-19 vaccine for domestic cats.
RESUMO
We investigated the possibility that sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks had extended beyond the historically affected northern part of South Africa that was declared a controlled area in 1935 to prevent the spread of infection to the rest of the country. We recently reported finding antibody to the virus in extralimital warthogs in the south of the country, and now describe the detection of infected ticks outside the controlled area. A total of 5078 ticks was collected at 45 locations in 7/9 provinces during 2019-2021 and assayed as 711 pools for virus content by qPCR, while 221 pools were also analysed for tick phylogenetics. Viral nucleic acid was detected in 50 tick pools representing all four members of the Ornithodoros (Ornithodoros) moubata complex known to occur in South Africa: O. (O.) waterbergensis and O. (O.) phacochoerus species yielded ASFV genotypes XX, XXI, XXII at 4 locations and O. (O.) moubata yielded ASFV genotype I at two locations inside the controlled area. Outside the controlled area, O. (O.) moubata and O. (O.) compactus ticks yielded ASFV genotype I at 7 locations, while genotype III ASFV was identified in O. (O.) compactus ticks at a single location. Two of the three species of the O. (O.) savignyi complex ticks known to be present in the country, O. (O.) kalahariensis and O. (O.) noorsveldensis, were collected at single locations and found negative for virus. The only member of the Pavlovskyella subgenus of Ornithodoros ticks known to occur in South Africa, O. (P.) zumpti, was collected from warthog burrows for the first time, in Addo National Park in the Eastern Cape Province where ASFV had never been recorded, and it tested negative for the viral nucleic acid. While it is confirmed that there is sylvatic circulation of ASFV outside the controlled area in South Africa, there is a need for more extensive surveillance and for vector competence studies with various species of Ornithodoros ticks.