Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nitric Oxide ; 129: 41-52, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216240

RESUMO

Hydrogen sulfide (H2S) emerged as an essential signaling molecule exerting beneficial effects in various cardiovascular, neurodegenerative, or musculoskeletal diseases with an inflammatory component, such as osteoarthritis. These protective effects were initially attributed to protein S-sulfhydration, a posttranslational modification of reactive cysteine residues. However, recent studies suggest that polysulfides and not H2S are responsible for S-sulfhydration. To distinguish between H2S and polysulfide-mediated effects in this study, we used the slow-releasing H2S and persulfide donor P*, which can be decomposed into polysulfides. The effects of P* on IL-1ß-induced inducible nitric oxide synthase (iNOS), a pro-inflammatory mediator in osteoarthritis, were determined by nitrite measurement, qPCR, and Western blotting in the murine chondrocyte-like cell line ATDC5. Decomposed P* significantly reduced IL-1ß-induced iNOS signaling via polysulfides, independently of H2S. In line with this, the fast-releasing H2S donor NaHS was ineffective. In RAW 264.7 macrophages, similar results were obtained. P*-derived polysulfides further diminished IL-1ß-induced CCAAT/enhancer-binding protein (C/EBP) ß and δ expression in ATDC5 cells, which might play a critical role in P*-mediated iNOS decline. In conclusion, our data support the view that polysulfides are essential signaling molecules as well as potential mediators of H2S signaling. Moreover, we propose that C/EBPß/δ might be a novel target involved in H2S and polysulfide-mediated anti-inflammatory signaling.


Assuntos
Sulfeto de Hidrogênio , Osteoartrite , Camundongos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Sulfetos/farmacologia , Sulfetos/metabolismo , Anti-Inflamatórios , Óxido Nítrico/metabolismo
2.
Eur J Pharmacol ; 927: 175050, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618039

RESUMO

Pharmacological inhibition of adenosine kinase (ADK), the major route of myocardial adenosine metabolism, can elicit acute cardioprotection against ischemia-reperfusion (IR) by increasing adenosine signaling. Here, we identified a novel, extended effect of the ADK inhibitor, ABT-702, on cardiac ADK protein longevity and investigated its impact on sustained adenosinergic cardioprotection. We found that ABT-702 treatment significantly reduced cardiac ADK protein content in mice 24-72 h after administration (IP or oral). ABT-702 did not alter ADK mRNA levels, but strongly diminished (ADK-L) isoform protein content through a proteasome-dependent mechanism. Langendorff perfusion experiments revealed that hearts from ABT-702-treated mice maintain higher adenosine release long after ABT-702 tissue elimination, accompanied by increased basal coronary flow (CF) and robust tolerance to IR. Sustained cardioprotection by ABT-702 did not involve increased nitric oxide synthase expression, but was completely dependent upon increased adenosine release in the delayed phase (24 h), as indicated by the loss of cardioprotection and CF increase upon perfusion of adenosine deaminase or adenosine receptor antagonist, 8-phenyltheophylline. Importantly, blocking adenosine receptor activity with theophylline during ABT-702 administration prevented ADK degradation, preserved late cardiac ADK activity, diminished CF increase and abolished delayed cardioprotection, indicating that early adenosine receptor signaling induces late ADK degradation to elicit sustained adenosine release. Together, these results indicate that ABT-702 induces a distinct form of delayed cardioprotection mediated by adenosine receptor-dependent, proteasomal degradation of cardiac ADK and enhanced adenosine signaling in the late phase. These findings suggest ADK protein stability may be pharmacologically targeted to achieve sustained adenosinergic cardioprotection.


Assuntos
Adenosina Quinase , Morfolinas , Pirimidinas , Adenosina Quinase/antagonistas & inibidores , Adenosina Quinase/metabolismo , Animais , Cardiotônicos/farmacologia , Coração/diagnóstico por imagem , Camundongos , Morfolinas/farmacologia , Miocárdio/enzimologia , Proteólise/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores Purinérgicos P1/metabolismo
3.
Antioxidants (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209813

RESUMO

Hydrogen sulfide (H2S) is an important mediator of inflammatory processes. However, controversial findings also exist, and its underlying molecular mechanisms are largely unknown. Recently, the byproducts of H2S, per-/polysulfides, emerged as biological mediators themselves, highlighting the complex chemistry of H2S. In this study, we characterized the biological effects of P*, a slow-releasing H2S and persulfide donor. To differentiate between H2S and polysulfide-derived effects, we decomposed P* into polysulfides. P* was further compared to the commonly used fast-releasing H2S donor sodium hydrogen sulfide (NaHS). The effects on oxidative stress and interleukin-6 (IL-6) expression were assessed in ATDC5 cells using superoxide measurement, qPCR, ELISA, and Western blotting. The findings on IL-6 expression were corroborated in primary chondrocytes from osteoarthritis patients. In ATDC5 cells, P* not only induced the expression of the antioxidant enzyme heme oxygenase-1 via per-/polysulfides, but also induced activation of Akt and p38 MAPK. NaHS and P* significantly impaired menadione-induced superoxide production. P* reduced IL-6 levels in both ATDC5 cells and primary chondrocytes dependent on H2S release. Taken together, P* provides a valuable research tool for the investigation of H2S and per-/polysulfide signaling. These data demonstrate the importance of not only H2S, but also per-/polysulfides as bioactive signaling molecules with potent anti-inflammatory and, in particular, antioxidant properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA