Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(13): 4138-4146, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35324210

RESUMO

Nitric oxide (NO) removal by photocatalytic oxidation over g-C3N4 has achieved more efficient results. However, there is a concern about the high NO-to-NO2 conversion yield of products, which is not suitable for the photocatalytic NO reaction. In this study, we modify g-C3N4 by WO3 nanoplates for the first time for photocatalytic NO oxidation over a WO3/g-C3N4 composite to enhance the green product selectivity under atmospheric conditions. The results indicate that the photocatalytic efficiency for NO removal by the WO3/g-C3N4 composite is drastically improved and achieves 52.5%, which is approximately 2.1 times higher than that of pure g-C3N4. Significantly, the green product (NO3-) selectivity of the WO3/g-C3N4 composite is 8.7 times higher than that of pure g-C3N4, and the selectivity remained high even after five cycles of photocatalytic tests. We also conclude that the enhanced green product selectivity of photocatalytic NO oxidation by the WO3/g-C3N4 composite is due to the separation and acceleration of the photogenerated charges of the WO3/g-C3N4 S-scheme heterojunction.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38072884

RESUMO

The development of hydrogen energy sources based on electrochemical water splitting is of increasing interest due to its advantages in energy and environmental fields. In this study, Co3O4 was decorated on carbon cloth (CC) by a hydrothermal method and was used as an electrode for water splitting. The structural and morphological properties of the materials are assessed using a range of reliable techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with EDX mapping, and diffuse reflectance spectroscopy (DRS). Results indicate that the Co3O4/CC material was synthesized at 140 °C for 9 h and calcined at 350 °C achieving a superior overall water-splitting activity in the direction of hydrogen evolution reaction (HER) reaction than that of the oxygen evolution reaction (OER). In detail, HER characteristics with an overpotential at -0.234 V and a current density at 10 mA cm-2. In addition, the Co3O4/CC material also gives overpotential at 0.54 V for OER process. Furthermore, the electrochemical surface area of Co3O4/CC material is 7.6 times higher than CC electrode. Moreover, the CC fabric is destroyed when the annealing temperature is higher than 350 °C, leading to a significant decrease in the activity of Co3O4/CC. The as-prepared Co3O4 shows good adhesion and stability based on CC substrate without binder substance or further treatment of CC.

3.
Beilstein J Nanotechnol ; 13: 96-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35116216

RESUMO

Semiconducting SnO2 photocatalyst nanomaterials are extensively used in energy and environmental research because of their outstanding physical and chemical properties. In recent years, nitrogen oxide (NO x ) pollutants have received particular attention from the scientific community. The photocatalytic NO x oxidation will be an important contribution to mitigate climate change in the future. Existing review papers mainly focus on applying SnO2 materials for photocatalytic oxidation of pollutants in the water, while studies on the decomposition of gas pollutants are still being developed. In addition, previous studies have shown that the photocatalytic activity regarding NO x decomposition of SnO2 and other materials depends on many factors, such as physical structure and band energies, surface and defect states, and morphology. Recent studies have been focused on the modification of properties of SnO2 to increase the photocatalytic efficiency of SnO2, including bandgap engineering, defect regulation, surface engineering, heterojunction construction, and using co-catalysts, which will be thoroughly highlighted in this review.

4.
Chemosphere ; 268: 129291, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33359837

RESUMO

In this report, the peroxymonosulfate activation over Ag/ZnO heterojunction under visible light (Ag/ZnO/PMS/Vis) for p-nitrophenol (p-NP) contaminant degradation was conducted in detail. Herein, the catalyst dosage was decreased, and the results showed that a dosage of 0.5 g L-1 Ag/ZnO and 4 mM PMS almost completely degraded 30 mg L-1 p-NP after 90 min of irradiation. In addition, the PMS activation mechanism of Ag/ZnO/PMS/Vis system was proposed by investigations of the influence of PMS concentration, the FTIR spectra, UV-Vis spectroscopy, and electrochemical analyses. Additionally, the role of SO4•- in the photocatalytic reaction is determined by a combination of a trapping test using isopropanol and tert-butanol as probe compounds and electron spin resonance (ESR) spectroscopy. This report provides a potential alternative to remove persistent organic contaminants in sewage using PMS incorporated with Ag/ZnO under visible light irradiation.


Assuntos
Óxido de Zinco , Luz , Nitrofenóis , Peróxidos , Prata
5.
ACS Omega ; 4(7): 12853-12859, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460411

RESUMO

Removal of nitrogen oxide pollution has attracted much attention, and photocatalysis is considered as an effective method to treat polluted gas. Currently, modified semiconductors with approximate band gap are used as visible-light-driven photocatalysts. Herein, this is the first investigation of photocatalytic removal of NO under visible light over Cr-doped ZnO nanoparticles (Cr-ZnO NPs). Furthermore, the trapping species experiment and electron spin resonance measurement were conducted to identify the primary reactive factor of the photocatalytic reaction. In this study, Cr-ZnO NPs were synthesized by the sol-gel method with a narrow band gap, enhanced NO photocatalytic degradation performance, low NO2 conversion yield, and high stability under visible light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA