Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Opt Express ; 30(8): 13252-13262, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472942

RESUMO

We describe a novel method of single-shot trap frequency measurement for a confined Bose-Einstein Condensate, which uses an atom laser to repeatedly sample the mean velocity of trap oscillations as a function of time. The method is able to determine the trap frequency to an accuracy of 39 ppm (16 mHz) in a single experimental realization, improving on the literature by a factor of three. Further, we show that by employing a reconstructive aliasing approach our method can be applied to trap frequencies more than a factor of 3 greater than the sampling frequency.

2.
Phys Rev Lett ; 129(14): 147402, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240404

RESUMO

Exciton polaritons (polaritons herein) in transition-metal dichalcogenide monolayers have attracted significant attention due to their potential for polariton-based optoelectronics. Many of the proposed applications rely on the ability to trap polaritons and to reach macroscopic occupation of their ground energy state. Here, we engineer a trap for room-temperature polaritons in an all-dielectric optical microcavity by locally increasing the interactions between the WS_{2} excitons and cavity photons. The resulting confinement enhances the population and the first-order coherence of the polaritons in the ground state, with the latter effect related to dramatic suppression of disorder-induced inhomogeneous dephasing. We also demonstrate efficient population transfer into the trap when optically injecting free polaritons outside of its periphery.

3.
Nature ; 540(7631): 100-103, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27905444

RESUMO

Ghost imaging is a counter-intuitive phenomenon-first realized in quantum optics-that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a 'ghost' image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell's inequalities with atoms.

4.
Phys Rev Lett ; 126(7): 075301, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666453

RESUMO

We report the observation of low-energy, low-momenta collective oscillations of an exciton-polariton condensate in a round "box" trap. The oscillations are dominated by the dipole and breathing modes, and the ratio of the frequencies of the two modes is consistent with that of a weakly interacting two-dimensional trapped Bose gas. The speed of sound extracted from the dipole oscillation frequency is smaller than the Bogoliubov sound, which can be partly explained by the influence of the incoherent reservoir. These results pave the way for understanding the effects of reservoir, dissipation, energy relaxation, and finite temperature on the superfluid properties of exciton-polariton condensates and other two-dimensional open-dissipative quantum fluids.

5.
Phys Rev Lett ; 127(18): 185301, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767383

RESUMO

Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic microcavities with momentum-dependent transverse-electric-transverse-magnetic splitting of the optical modes, the excitations' dispersions are predicted to be strongly anisotropic, which is a consequence of the synthetic magnetic gauge field of the cavity, as well as the interplay between different interaction strengths for polaritons in the singlet and triplet spin configurations. Here, by directly measuring the dispersion of the collective excitations in a high-density optically trapped exciton-polariton condensate, we observe excellent agreement with the theoretical predictions for spinor polariton excitations. We extract the interaction constants for polaritons of the same and opposite spin and map out the characteristic spin textures in an interacting spinor condensate of exciton polaritons.

6.
Nature ; 526(7574): 554-8, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26458102

RESUMO

Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard--a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices.

7.
Phys Rev Lett ; 125(1): 013002, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678641

RESUMO

We present the detection of the highly forbidden 2^{3}S_{1}→3^{3}S_{1} atomic transition in helium, the weakest transition observed in any neutral atom. Our measurements of the transition frequency, upper state lifetime, and transition strength agree well with published theoretical values and can lead to tests of both QED contributions and different QED frameworks. To measure such a weak transition, we develop two methods using ultracold metastable (2^{3}S_{1}) helium atoms: low background direct detection of excited then decayed atoms for sensitive measurement of the transition frequency and lifetime, and a pulsed atom laser heating measurement for determining the transition strength. These methods could possibly be applied to other atoms, providing new tools in the search for ultraweak transitions and precision metrology.

8.
Phys Rev Lett ; 122(23): 233601, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298918

RESUMO

Ghost imaging is a quantum optics technique that uses correlations between two beams to reconstruct an image from photons that do not interact with the object being imaged. While pairwise (second-order) correlations are usually used to create the ghost image, higher-order correlations can be utilized to improve the performance. In this Letter, we demonstrate higher-order atomic ghost imaging, using entangled ultracold metastable helium atoms from an s-wave collision halo. We construct higher-order ghost images up to fifth order and show that using higher-order correlations can improve the visibility of the images without impacting the resolution. This is the first demonstration of higher-order ghost imaging with massive particles and the first higher-order ghost imaging protocol of any type using a quantum source.

9.
Phys Rev Lett ; 121(22): 225302, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547627

RESUMO

We demonstrate, experimentally and theoretically, controlled loading of an exciton-polariton vortex chain into a 1D array of trapping potentials. Switching between two types of vortex chains, with topological charges of the same or alternating signs, is achieved by appropriately shaping an off-resonant pump beam that drives the system to the regime of bosonic condensation. In analogy to spin chains, these vortex sequences realize either a "ferromagnetic" or an "antiferromagnetic" order, whereby the role of spin is played by the orbital angular momentum. The ferromagnetic ordering of vortices is associated with the formation of a persistent chiral current. Our results pave the way for the controlled creation of nontrivial distributions of orbital angular momentum and topological order in a periodic exciton-polariton system.

10.
Phys Rev Lett ; 120(6): 065301, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481285

RESUMO

We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.

11.
Phys Rev Lett ; 118(24): 240402, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665660

RESUMO

In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system-the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.

12.
Phys Rev Lett ; 117(9): 097403, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610883

RESUMO

We demonstrate, experimentally and theoretically, a Talbot effect for hybrid light-matter waves-an exciton-polariton condensate formed in a semiconductor microcavity with embedded quantum wells. The characteristic "Talbot carpet" is produced by loading the exciton-polariton condensate into a microstructured one-dimensional periodic array of mesa traps, which creates an array of phase-locked sources for coherent polariton flow in the plane of the quantum wells. The spatial distribution of the Talbot fringes outside the mesas mimics the near-field diffraction of a monochromatic wave on a periodic amplitude and phase grating with the grating period comparable to the wavelength. Despite the lossy nature of the polariton system, the Talbot pattern persists for distances exceeding the size of the mesas by an order of magnitude. Thus, our experiment demonstrates efficient shaping of the two-dimensional flow of coherent exciton polaritons by a one-dimensional "flat lens."

13.
Phys Rev Lett ; 115(4): 043004, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252681

RESUMO

We present the first measurement for helium atoms of the tune-out wavelength at which the atomic polarizability vanishes. We utilize a novel, highly sensitive technique for precisely measuring the effect of variations in the trapping potential of confined metastable (2^{3}S_{1}) helium atoms illuminated by a perturbing laser light field. The measured tune-out wavelength of 413.0938(9_{stat})(20_{syst}) nm compares well with the value predicted by a theoretical calculation [413.02(9) nm] which is sensitive to finite nuclear mass, relativistic, and quantum electrodynamic effects. This provides motivation for more detailed theoretical investigations to test quantum electrodynamics.

14.
Phys Rev Lett ; 113(13): 130403, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302873

RESUMO

An important aspect of the rapidly growing field of quantum atom optics is exploring the behavior of ultracold atoms at a deeper level than the mean field approximation, where the quantum properties of individual atoms becomes important. Major recent advances have been achieved with the creation and detection of reliable single-atom sources, which is a crucial tool for testing fundamental quantum processes. Here, we create a source comprised of a single ultracold metastable helium atom, which enables novel free-space quantum atom optics experiments to be performed with single massive particles with large de Broglie wavelengths.

15.
Phys Rev Lett ; 111(9): 093601, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033033

RESUMO

A fundamental property of a three-dimensional Bose-Einstein condensate is long-range coherence; however, in systems of lower dimensionality, not only is the long-range coherence destroyed but additional states of matter are predicted to exist. One such state is a "transverse condensate," first predicted by van Druten and Ketterle [Phys. Rev. Lett. 79, 549 (1997)], in which the gas condenses in the transverse dimensions of a highly anisotropic trap while remaining thermal in the longitudinal dimension. Here, we detect the transition from a three-dimensional thermal gas to a gas undergoing transverse condensation by probing Hanbury Brown-Twiss correlations.

16.
Nat Commun ; 14(1): 1026, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823076

RESUMO

Dispersion engineering is a powerful and versatile tool that can vary the speed of light signals and induce negative-mass effects in the dynamics of particles and quasiparticles. Here, we show that dissipative coupling between bound electron-hole pairs (excitons) and photons in an optical microcavity can lead to the formation of exciton polaritons with an inverted dispersion of the lower polariton branch and hence, a negative mass. We perform direct measurements of the anomalous dispersion in atomically thin (monolayer) WS2 crystals embedded in planar microcavities and demonstrate that the propagation direction of the negative-mass polaritons is opposite to their momentum. Our study introduces the concept of non-Hermitian dispersion engineering for exciton polaritons and opens a pathway for realising new phases of quantum matter in a solid state.

17.
Sci Rep ; 12(1): 13178, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915112

RESUMO

We present observations of the high momentum tail in expanding Bose-Einstein condensates of metastable Helium atoms released from a harmonic trap. The far-field density profile exhibits features that support identification of the tails of the momentum distribution as originating in the in-situ quantum depletion prior to release. Thus, we corroborate recent observations of slowly-decaying tails in the far-field beyond the thermal component. This observation is in conflict with the hydrodynamic theory, which predicts that the in-situ depletion does not survive when atoms are released from a trap. Indeed, the depleted tails even appear stronger in the far-field than expected before release, and we discuss the challenges of interpreting this in terms of the Tan contact in the trapped gas. In complement to these observations, full quantum simulations of the experiment show that, under the right conditions, the depletion can persist into the far field after expansion. Moreover, the simulations provide mechanisms for survival and for the the large-momentum tails to appear stronger after expansion due to an acceleration of the depleted atoms by the mean-field potential. However, while in qualitative agreement, the final depletion observed in the experiment is much larger than in the simulation.

18.
Science ; 376(6589): 199-203, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389780

RESUMO

Despite quantum electrodynamics (QED) being one of the most stringently tested theories underpinning modern physics, recent precision atomic spectroscopy measurements have uncovered several small discrepancies between experiment and theory. One particularly powerful experimental observable that tests QED independently of traditional energy level measurements is the "tune-out" frequency, where the dynamic polarizability vanishes and the atom does not interact with applied laser light. In this work, we measure the tune-out frequency for the 23S1 state of helium between transitions to the 23P and 33P manifolds and compare it with new theoretical QED calculations. The experimentally determined value of 725,736,700(260) megahertz differs from theory [725,736,252(9) megahertz] by 1.7 times the measurement uncertainty and resolves both the QED contributions and retardation corrections.

19.
Opt Lett ; 36(7): 1131-3, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21479006

RESUMO

In direct analogy to the textbook example of light guided in a few-mode fiber (FMF), we report the observation of the first excited mode of an optically guided atomic beam. We selectively excite the atomic analog of the LP01 optical mode by controlling the energy distribution of ultracold atoms loaded into the guide, resulting in a modal structure dominated by a 47(2)% population in the first excited transverse mode. The ability to guide lower-order modes has been essential to demonstrating optical effects such as multimode interferometry, slow light, and entanglement, and an atomic analog to a FMF may lead to similarly useful applications.

20.
Phys Rev Lett ; 107(7): 075301, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902401

RESUMO

The coherence properties of amplified matter waves generated by four-wave mixing (FWM) are studied using the Hanbury-Brown-Twiss method. We examine two limits. In the first case stimulated processes lead to the selective excitation of a pair of spatially separated modes, which we show to be second order coherent, while the second occurs when the FWM process is multimode, due to spontaneous scattering events which leads to incoherent matter waves. Amplified FWM is a promising candidate for fundamental tests of quantum mechanics where correlated modes with large occupations are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA