Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Neurobiol Dis ; 114: 1-16, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29477640

RESUMO

Inhibition of mitochondrial axonal trafficking by amyloid beta (Aß) peptides has been implicated in early pathophysiology of Alzheimer's Disease (AD). Yet, it remains unclear whether the loss of motility inevitably induces the loss of mitochondrial function, and whether restoration of axonal trafficking represents a valid therapeutic target. Moreover, while some investigations identify Aß oligomers as the culprit of trafficking inhibition, others propose that fibrils play the detrimental role. We have examined the effect of a panel of Aß peptides with different mutations found in familial AD on mitochondrial motility in primary cortical mouse neurons. Peptides with higher propensity to aggregate inhibit mitochondrial trafficking to a greater extent with fibrils inducing the strongest inhibition. Binding of Aß peptides to the plasma membrane was sufficient to induce trafficking inhibition where peptides with reduced plasma membrane binding and internalization had lesser effect on mitochondrial motility. We also found that Aß peptide with Icelandic mutation A673T affects axonal trafficking of mitochondria but has very low rates of plasma membrane binding and internalization in neurons, which could explain its relatively low toxicity. Inhibition of mitochondrial dynamics caused by Aß peptides or fibrils did not instantly affect mitochondrial bioenergetic and function. Our results support a mechanism where inhibition of axonal trafficking is initiated at the plasma membrane by soluble low molecular weight Aß species and is exacerbated by fibrils. Since trafficking inhibition does not coincide with the loss of mitochondrial function, restoration of axonal transport could be beneficial at early stages of AD progression. However, strategies designed to block Aß aggregation or fibril formation alone without ensuring the efficient clearance of soluble Aß may not be sufficient to alleviate the trafficking phenotype.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Axônios/metabolismo , Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Agregados Proteicos/fisiologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/farmacologia , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Células Cultivadas , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Gravidez , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia
2.
J Immunol ; 189(4): 1835-42, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802411

RESUMO

After a primary immune response, T cell memory occurs when a subset of Ag-specific T cells resists peripheral selection by acquiring resistance to TCR-induced death. Recent data have implicated Bcl-2 interacting mediator of death (Bim) as an essential mediator of the contraction phase of T cell immunity. In this article, we describe that stromal-derived factor-1α (SDF-1α) ligation of CXCR4 on activated T cells promotes two parallel processes that favor survival, phospho-inactivation of Foxo3A, as well as Bim extralong isoform (Bim(EL)) degradation, both in an Akt- and Erk-dependent manner. Activated primary CD4 T cells treated with SDF-1α therefore become resistant to the proapoptotic effects of TCR ligation or IL-2 deprivation and accumulate cells of a memory phenotype. Unlike SDF-1α, gp120 ligation of CXCR4 has the opposite effect because it causes p38-dependent Bim(EL) upregulation. However, when activated CD4 T cells are treated with both gp120 and SDF-1α, the SDF-1α-driven effects of Bim(EL) degradation and acquired resistance to TCR-induced death predominate. These results provide a novel causal link between SDF-1α-induced chemotaxis, degradation of Bim(EL), and the development of CD4 T cell memory.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Quimiocina CXCL12/imunologia , Memória Imunológica/imunologia , Proteínas de Membrana/imunologia , Proteínas Proto-Oncogênicas/imunologia , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Linfócitos T CD4-Positivos/metabolismo , Quimiocina CXCL12/metabolismo , Quimiotaxia de Leucócito/imunologia , Citometria de Fluxo , Humanos , Immunoblotting , Imunoprecipitação , Ativação Linfocitária/imunologia , Proteínas de Membrana/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Receptores CXCR4/imunologia , Receptores CXCR4/metabolismo , Transdução de Sinais/imunologia , Transfecção , Regulação para Cima
3.
Cell Death Dis ; 15(5): 382, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821960

RESUMO

Impairment of autophagy leads to an accumulation of misfolded proteins and damaged organelles and has been implicated in plethora of human diseases. Loss of autophagy in actively respiring cells has also been shown to trigger metabolic collapse mediated by the depletion of nicotinamide adenine dinucleotide (NAD) pools, resulting in cell death. Here we found that the deficit in the autophagy-NAD axis underpins the loss of viability in cell models of a neurodegenerative lysosomal storage disorder, Niemann-Pick type C1 (NPC1) disease. Defective autophagic flux in NPC1 cells resulted in mitochondrial dysfunction due to impairment of mitophagy, leading to the depletion of both the reduced and oxidised forms of NAD as identified via metabolic profiling. Consequently, exhaustion of the NAD pools triggered mitochondrial depolarisation and apoptotic cell death. Our chemical screening identified two FDA-approved drugs, celecoxib and memantine, as autophagy activators which effectively restored autophagic flux, NAD levels, and cell viability of NPC1 cells. Of biomedical relevance, either pharmacological rescue of the autophagy deficiency or NAD precursor supplementation restored NAD levels and improved the viability of NPC1 patient fibroblasts and induced pluripotent stem cell (iPSC)-derived cortical neurons. Together, our findings identify the autophagy-NAD axis as a mechanism of cell death and a target for therapeutic interventions in NPC1 disease, with a potential relevance to other neurodegenerative disorders.


Assuntos
Autofagia , Células-Tronco Pluripotentes Induzidas , NAD , Doença de Niemann-Pick Tipo C , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Humanos , Autofagia/efeitos dos fármacos , NAD/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Memantina/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
4.
Cells ; 12(8)2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190020

RESUMO

Alzheimer's disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aß and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aß and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Lipídeos
5.
Adv Biol (Weinh) ; 7(10): e2200202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37140138

RESUMO

Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Camundongos , Animais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Microscopia Eletrônica de Varredura , Células Cultivadas
6.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086404

RESUMO

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Autofagia , Niacinamida/metabolismo
7.
J Biol Chem ; 286(41): 35742-35754, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21859711

RESUMO

Virus-host interactions are characterized by the selection of adaptive mechanisms by which to evade pathogenic and defense mechanisms, respectively. In primary T cells infected with HIV, HIV infection up-regulates TNF-related apoptosis inducing ligand (TRAIL) and death-inducing TRAIL receptors, but blockade of TRAIL:TRAIL receptor interaction does not alter HIV-induced cell death. Instead, HIV infection results in a novel splice variant that we call TRAIL-short (TRAIL-s), which antagonizes TRAIL-R2. In HIV patients, plasma TRAIL-s concentration increases with increasing viral load and renders cells resistant to TRAIL-induced death. Knockdown of TRAIL-s abrogates this resistance. We propose that TRAIL-s is a novel adaptive mechanism of apoptosis resistance acquired by HIV-infected cells to avoid their elimination by TRAIL-dependent effector mechanism.


Assuntos
Processamento Alternativo , Infecções por HIV/sangue , HIV , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/sangue , Linfócitos T/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/genética , Feminino , Células HEK293 , Infecções por HIV/genética , Humanos , Células Jurkat , Masculino , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/isolamento & purificação , Ligante Indutor de Apoptose Relacionado a TNF/genética
8.
Acta Pharm Sin B ; 12(2): 483-495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256930

RESUMO

Alzheimer's disease (AD), the most prominent form of dementia in the elderly, has no cure. Strategies focused on the reduction of amyloid beta or hyperphosphorylated Tau protein have largely failed in clinical trials. Novel therapeutic targets and strategies are urgently needed. Emerging data suggest that in response to environmental stress, mitochondria initiate an integrated stress response (ISR) shown to be beneficial for healthy aging and neuroprotection. Here, we review data that implicate mitochondrial electron transport complexes involved in oxidative phosphorylation as a hub for small molecule-targeted therapeutics that could induce beneficial mitochondrial ISR. Specifically, partial inhibition of mitochondrial complex I has been exploited as a novel strategy for multiple human conditions, including AD, with several small molecules being tested in clinical trials. We discuss current understanding of the molecular mechanisms involved in this counterintuitive approach. Since this strategy has also been shown to enhance health and life span, the development of safe and efficacious complex I inhibitors could promote healthy aging, delaying the onset of age-related neurodegenerative diseases.

9.
Dev Cell ; 57(22): 2584-2598.e11, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413951

RESUMO

Autophagy is an essential catabolic process that promotes the clearance of surplus or damaged intracellular components. Loss of autophagy in age-related human pathologies contributes to tissue degeneration through a poorly understood mechanism. Here, we identify an evolutionarily conserved role of autophagy from yeast to humans in the preservation of nicotinamide adenine dinucleotide (NAD) levels, which are critical for cell survival. In respiring mouse fibroblasts with autophagy deficiency, loss of mitochondrial quality control was found to trigger hyperactivation of stress responses mediated by NADases of PARP and Sirtuin families. Uncontrolled depletion of the NAD(H) pool by these enzymes ultimately contributed to mitochondrial membrane depolarization and cell death. Pharmacological and genetic interventions targeting several key elements of this cascade improved the survival of autophagy-deficient yeast, mouse fibroblasts, and human neurons. Our study provides a mechanistic link between autophagy and NAD metabolism and identifies targets for interventions in human diseases associated with autophagic, lysosomal, and mitochondrial dysfunction.


Assuntos
NAD , Saccharomyces cerevisiae , Animais , Camundongos , Humanos , Sobrevivência Celular , Autofagia , Morte Celular
10.
J Biol Chem ; 285(2): 888-902, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19887445

RESUMO

Although treatment with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) is known to protect a subset of cells from induction of apoptosis by death ligands such as Fas ligand and tumor necrosis factor-alpha-related apoptosis-inducing ligand, the mechanism of this protection is unknown. This study demonstrated that protection in short term apoptosis assays and long term proliferation assays was maximal when Jurkat or HL-60 human leukemia cells were treated with 2-5 nm PMA. Immunoblotting demonstrated that multiple PKC isoforms, including PKCalpha, PKCbeta, PKCepsilon, and PKC, translocated from the cytosol to a membrane-bound fraction at these PMA concentrations. When the ability of short hairpin RNA (shRNA) constructs that specifically down-regulated each of these isoforms was examined, PKCbeta shRNA uniquely reversed PMA-induced protection against cell death. The PKCbeta-selective small molecule inhibitor enzastaurin had a similar effect. Although mass spectrometry suggested that Fas is phosphorylated on a number of serines and threonines, mutation of these sites individually or collectively had no effect on Fas-mediated death signaling or PMA protection. Further experiments demonstrated that PMA diminished ligand-induced cell surface accumulation of Fas and DR5, and PKCbeta shRNA or enzastaurin reversed this effect. Moreover, enzastaurin sensitized a variety of human tumor cell lines and clinical acute myelogenous leukemia isolates, which express abundant PKCbeta, to tumor necrosis factor-alpha related apoptosis-inducing ligand-induced death in the absence of PMA. Collectively, these results identify a specific PKC isoform that modulates death receptor-mediated cytotoxicity as well as a small molecule inhibitor that mitigates the inhibitory effects of PKC activation on ligand-induced death receptor trafficking and cell death.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptor fas/metabolismo , Carcinógenos/farmacologia , Ativadores de Enzimas/farmacologia , Proteína Ligante Fas/farmacologia , Células HL-60 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Células Jurkat , Fosforilação/efeitos dos fármacos , Proteína Quinase C beta , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
11.
Kardiochir Torakochirurgia Pol ; 18(4): 247-251, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35079268

RESUMO

In modern surgical practice, considerable attention is paid to reducing surgical trauma and reducing the incidence of postoperative complications, which has a direct impact on the duration of hospitalization and patient recovery. In chest surgery, this problem is most significant, since to perform small interventions on the lungs and pleura, a wide thoracotomy was required with the transection of the chest muscles and the separation of the ribs. The article describes modern minimally invasive approaches used in lung surgery. Particular attention is paid to the role of video-assisted surgical interventions in the surgical treatment of non-small cell lung cancer. The results of traditional multiport thoracoscopic lung resections were compared with standard open thoracotomy. The advantages and possible disadvantages of various options for video-assisted surgical interventions on the lungs are described.

12.
Mitochondrion ; 58: 83-94, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610756

RESUMO

Novel therapeutic strategies for Alzheimer's disease (AD) are of the greatest priority given the consistent failure of recent clinical trials focused on Aß or pTau. Earlier, we demonstrated that mild mitochondrial complex I inhibitor CP2 blocks neurodegeneration and cognitive decline in multiple mouse models of AD. To evaluate the safety of CP2 in humans, we performed a genome-wide association study (GWAS) using 196 lymphoblastoid cell lines and identified 11 SNP loci and 64 mRNA expression probe sets that potentially associate with CP2 susceptibility. Using primary mouse neurons and pharmacokinetic study, we show that CP2 is generally safe at a therapeutic dose.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Estudo de Associação Genômica Ampla , Linfócitos/metabolismo , Mitocôndrias/enzimologia , Animais , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Linfócitos/citologia , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único
13.
Commun Biol ; 4(1): 61, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420340

RESUMO

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Pironas/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção , Estudo de Prova de Conceito , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
Mol Cell Biol ; 23(19): 7068-81, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12972622

RESUMO

NF-kappaB is an ubiquitous transcription factor that is a key in the regulation of the immune response and inflammation. T-cell receptor (TCR) cross-linking leads to NF-kappaB activation, an IkappaB kinase (IKK)-dependent process. However, the upstream kinases that regulate IKK activity following TCR activation remain to be fully characterized. Herein, we demonstrate using genetic analysis, pharmacological inhibition, and RNA interference (RNAi) that the conventional protein kinase C (PKC) isoform PKCalpha, but not PKCbeta1, is required for the activation of the IKK complex following T-cell activation triggered by CD3/CD28 cross-linking. We find that in the presence of Ca(2+) influx, the catalytically active PKCalphaA25E induces IKK activity and NF-kappaB-dependent transcription; which is abrogated following the mutations of two aspartates at positions 246 and 248, which are required for Ca(2+) binding to PKCalpha and cell membrane recruitment. Kinetic studies reveal that an early phase (1 to 5 min) of IKK activation following TCR/CD28 cross-linking is PKCalpha dependent and that a later phase (5 to 25 min) of IKK activation is PKCtheta dependent. Activation of IKK- and NF-kappaB-dependent transcription by PKCalphaA25E is abrogated by the PKCtheta inhibitor rottlerin or the expression of the kinase-inactive form of PKCtheta. Taken together, our results suggest that PKCalpha acts upstream of PKCtheta to activate the IKK complex and NF-kappaB in T lymphocytes following TCR activation.


Assuntos
Isoenzimas/metabolismo , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/metabolismo , Acetofenonas/farmacologia , Ácido Aspártico/genética , Benzopiranos/farmacologia , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Cálcio/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Humanos , Quinase I-kappa B , Interleucina-2/genética , Isoenzimas/efeitos dos fármacos , Células Jurkat , Ativação Linfocitária , Mutação Puntual , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C-alfa , Proteína Quinase C-theta , Linfócitos T/enzimologia , Transcrição Gênica , Dedos de Zinco
16.
Endocrine ; 54(3): 671-680, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27444747

RESUMO

Available data associate lipids concentrations in men with body mass index, anabolic steroids, age, and certain cytokines. Data were less clear in women, especially across the full adult lifespan, and when segmented by premenopausal and postmenopausal status. SUBJECTS: 120 healthy women (60 premenopausal and 60 postmenopausal) in Olmsted County, MN, USA, a stable well studied clinical population. Dependent variables: measurements of 10 h fasting high-density lipoprotein cholesterol, total cholesterol, low-density lipoprotein cholesterol, and triglycerides. INDEPENDENT VARIABLES: testosterone, estrone, estradiol, 5-alpha-dihydrotestosterone, and sex-hormone binding globulin (by mass spectrometry); insulin, glucose, and albumin; abdominal visceral, subcutaneous, and total abdominal fat [abdominal visceral fat, subcutaneous fat, total abdominal fat by computerized tomography scan]; and a panel of cytokines (by enzyme-linked immunosorbent assay). Multivariate forward-selection linear-regression analysis was applied constrained to P < 0.01. Lifetime data: High-density lipoprotein cholesterol was correlated jointly with age (P < 0.0001, positively), abdominal visceral fat (P < 0.0001, negatively), and interleukin-6 (0.0063, negatively), together explaining 28.1 % of its variance (P = 2.3 × 10-8). Total cholesterol was associated positively with multivariate age only (P = 6.9 × 10-4, 9.3 % of variance). Triglycerides correlated weakly with sex-hormone binding globulin (P = 0.0115), and strongly with abdominal visceral fat (P < 0.0001), and interleukin-6 (P = 0.0016) all positively (P = 1.6 × 10-12, 38.9 % of variance). Non high-density lipoprotein cholesterol and low-density lipoprotein cholesterol correlated positively with both total abdominal fat and interleukin-8 (P = 2.0 × 10-5, 16.9 % of variance; and P = 0.0031, 9.4 % of variance, respectively). Premenopausal vs. postmenopausal comparisons identified specific relationships that were stronger in premenopausal than postmenopausal individuals, and vice versa. Age was a stronger correlate of low-density lipoprotein cholesterol; interleukin-6 of triglycerides and high-density lipoprotein; and both sex-hormone binding globulin and total abdominal fat of non high-density lipoprotein cholesterol in premenopausal than postmenopausal women. Conversely, sex-hormone binding globulin, abdominal visceral fat, interleukin-8, adiponectin were stronger correlates of triglycerides; abdominal visceral fat, and testosterone of high-density lipoprotein cholesterol; and age of both non high-density lipoprotein and low-density lipoprotein in postmenopausal than premenopausal women. Our data delineate correlations of total abdominal fat and interleukin-8 (both positively) with non high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in healthy women across the full age range of 21-79 years along with even more specific associations in premenopausal and postmenopausal individuals. Whether some of these outcomes reflect causal relationships would require longitudinal and interventional or genetic studies.


Assuntos
Gordura Abdominal/metabolismo , Lipídeos/sangue , Pós-Menopausa/sangue , Pré-Menopausa/sangue , Gordura Abdominal/diagnóstico por imagem , Adulto , Idoso , Feminino , Hormônios Esteroides Gonadais/sangue , Humanos , Interleucina-6/sangue , Interleucina-8/sangue , Pessoa de Meia-Idade , Globulina de Ligação a Hormônio Sexual/metabolismo , Tomografia Computadorizada por Raios X , Adulto Jovem
17.
Sci Rep ; 6: 18725, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26729583

RESUMO

Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/ultraestrutura , Modelos Animais de Doenças , Dinaminas/metabolismo , Hipóxia/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Fenótipo , Fosforilação
18.
EBioMedicine ; 2(4): 294-305, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26086035

RESUMO

Development of therapeutic strategies to prevent Alzheimer's Disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3ß activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD.

19.
Arch Pathol Lab Med ; 138(10): 1381-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25268201

RESUMO

CONTEXT: Prostate-specific antigen (PSA) is a 34-kDa glycoprotein with chymotrypsin-like enzyme activity that circulates both in free forms and complexed to various enzyme inhibitors including antichymotrypsin and α2-macroglobulin. Prostate-specific antigen bound to α2-macroglobulin is not detected by commercial PSA immunoassays. OBJECTIVE: To develop a mass spectrometry assay that detects the same forms of PSA as the immunoassays, which could serve as a reference for harmonizing PSA immunoassays. DESIGN: Prostate-specific antigen was immune extracted from serum, trypsin was digested, and the LSEPAELTDAVK peptide was quantitated on an API 5000 spectrometer. Calibrators were made by adding 10% free and 90% antichymotrypsin-bound PSA to female sera. The assay was standardized to the World Health Organization 96/670 reference standard. Validation of clinical utility and comparisons with 2 immunoassays (Roche cobas and Beckman Access) were performed using frozen sera aliquots from 100 men undergoing prostate biopsy (50 negative, 50 with cancer) and 5 serial samples collected over time from 5 men with advanced prostate cancer. RESULTS: The antibody extraction efficiency was greater than 99%. The assay has an analytic range from 1.2 to 76 ng/mL, with precision ranging from 8.6% at 1.5 ng/mL to 5.4% at 27 ng/mL. The mass spectrometry assay correlated well with 2 immunoassays. All 3 assays showed statistically equivalent separation of prostate cancer from benign disease using receiver operating characteristic curve analysis. CONCLUSIONS: This mass spectrometry assay can reliably measure PSA concentrations in human serum and could serve as a reference standard for harmonizing PSA immunoassays.


Assuntos
Fragmentos de Peptídeos/análise , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Métodos Analíticos de Preparação de Amostras , Anticorpos Monoclonais/química , Calibragem , Humanos , Indicadores e Reagentes/química , Masculino , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Antígeno Prostático Específico/química , Antígeno Prostático Específico/isolamento & purificação , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/diagnóstico , Proteólise , Curva ROC , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Tripsina/metabolismo
20.
Am J Clin Pathol ; 141(4): 527-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24619754

RESUMO

OBJECTIVES: Harmonization of prostate-specific antigen (PSA) immunoassays is important for good patient care. The specificity of the antibodies used to detect circulating PSA could cause differences in the PSA measurements. METHODS: We used mass spectrometry (MS) to quantitate the concentration of five peptides cleaved from trypsin digestion of PSA and compared these measurements with six automated immunoassays. Linear regression and a mixed-effects model were used to analyze the results. RESULTS: PSA measurements from the immunoassays and the five MS peptide assays were highly correlated (R(2) > 0.99), but the recovery of the World Health Organization standard and the regression slopes differed across assays. The same relative patterns of immunoassay differences were seen in comparing their results with each of the five MS peptide measurements from different parts of the circulating PSA molecules. CONCLUSIONS: Mass spectrometry quantitation of peptides derived from trypsin digestion of immune-extracted PSA could be used to harmonize PSA immunoassays.


Assuntos
Fragmentos de Peptídeos/sangue , Antígeno Prostático Específico/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Cromatografia Líquida/métodos , Epitopos , Feminino , Humanos , Imunoensaio/normas , Masculino , Antígeno Prostático Específico/imunologia , Antígeno Prostático Específico/metabolismo , Reprodutibilidade dos Testes , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA