Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267247

RESUMO

This study provides the first assessment of decadal changes in mangrove extents in Sierra Leone. While significant advances have been made in mangrove mapping using remote sensing, no study has documented long-term changes in mangrove extents in Sierra Leone-one of the most vulnerable countries in West Africa. Such understanding is critical for devising regional management strategies that can support local livelihoods. We utilize multi-date Landsat data and cloud computational techniques to quantify spatiotemporal changes in land cover, with focus on mangrove ecosystems, for 1990-2016 along the coast of Sierra Leone. We specifically focus on four estuaries-Scarcies, Sierra Leone, Yawri Bay, and Sherbro. We relied on the k-means approach for an unsupervised classification, and validated the classified map from 2016 using ground truth data collected from Sentinel-2 and high-resolution images and during field research (accuracy: 95%). Our findings indicate that the Scarcies river estuary witnessed the greatest mangrove loss since 1990 (45%), while the Sierra Leone river estuary experienced mangrove gain over the last 26 years (22%). Overall, the Sierra Leone coast lost 25% of its mangroves between 1990 and 2016, with the lowest coverage in 2000, during the period of civil war (1991-2002). However, natural mangrove dynamics, as supported by field observations, indicate the potential for regeneration and sustainability under carefully constructed management strategies.

2.
Environ Health Perspect ; 122(7): 679-86, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24633049

RESUMO

BACKGROUND: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea. OBJECTIVES: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels. DATA AND METHODS: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state, susceptibility, and carriage in the population. We compared a range of negative binomial generalized linear models fitted to the meningitis data. RESULTS: At the national level, a model using early incidence in December and averaged November-December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind having the greatest impact. A model with surface dust concentration as a predictive variable performed indistinguishably well. At the district level, the best spatiotemporal model included zonal wind, dust concentration, early incidence in December, and population density (pseudo-R2 = 0.41). CONCLUSIONS: We showed that wind and dust information and incidence in the early dry season predict part of the year-to-year variability of the seasonal incidence of meningitis at both national and district levels in Niger. Models of this form could provide an early-season alert that wind, dust, and other conditions are potentially conducive to an epidemic.


Assuntos
Aerossóis/análise , Clima , Poeira/análise , Meningite Meningocócica/epidemiologia , Previsões , Humanos , Incidência , Modelos Lineares , Meningite Meningocócica/microbiologia , Modelos Estatísticos , Níger/epidemiologia , Estações do Ano , Solo , Vento
3.
J Agric Biol Environ Stat ; 17(3): 442-460, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38179552

RESUMO

Bacterial (meningococcal) meningitis is a devastating infectious disease with outbreaks occurring annually during the dry season in locations within the 'Meningitis Belt', a region in sub-Saharan Africa stretching from Ethiopia to Senegal. Meningococcal meningitis occurs from December to May in the Sahel with large epidemics every 5-10 years and attack rates of up to 1000 infections per 100,000 people. High temperatures coupled with low humidity may favor the conversion of carriage to disease as the meningococcal bacteria in the nose and throat are better able to cross the mucosal membranes into the blood stream. Similarly, respiratory diseases such as influenza and pneumonia might weaken the immune defenses and add to the mucosa damage. Although the transmission dynamics are poorly understood, outbreaks regularly end with the onset of the rainy season and may begin anew with the following dry season. In this paper, we employ a generalized additive modeling approach to assess the association between number of reported meningitis cases and a set of weather variables (relative humidity, rain, wind, sunshine, maximum and minimum temperature). The association is adjusted for air quality (dust, carbon monoxide), as well as varying degrees of unobserved time-varying confounding processes that co-vary with both the disease incidence and weather. We present the analysis of monthly reported meningitis counts in Navrongo, Ghana, from 1998-2008.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA