RESUMO
Invadopodia are actin-rich membrane protrusions that digest the matrix barrier during cancer metastasis. Since the discovery of invadopodia, they have been visualized as localized and dot-like structures in different types of cancer cells on top of a 2D matrix. In this investigation of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), a highly invasive cancer frequently accompanied by neck lymph node and distal organ metastases, we revealed a new form of invadopodium with mobilizing features. Integration of live-cell imaging and molecular assays revealed the interaction of macrophage-released TNFα and EBV-encoded latent membrane protein 1 (LMP1) in co-activating the EGFR/Src/ERK/cortactin and Cdc42/N-WASP signaling axes for mobilizing the invadopodia with lateral movements. This phenomenon endows the invadopodia with massive degradative power, visualized as a shift of focal dot-like digestion patterns on a 2D gelatin to a dendrite-like digestion pattern. Notably, single stimulation of either LMP1 or TNFα could only enhance the number of ordinary dot-like invadopodia, suggesting that the EBV infection sensitizes the NPC cells to form mobilizing invadopodia when encountering a TNFα-rich tumor microenvironment. This study unveils the interplay of EBV and stromal components in driving the invasive potential of NPC via unleashing the propulsion of invadopodia in overcoming matrix hurdles. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Podossomos , Humanos , Carcinoma Nasofaríngeo/patologia , Podossomos/metabolismo , Podossomos/patologia , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/patologia , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Membrana/metabolismo , Proteínas da Matriz Viral/metabolismo , Microambiente TumoralRESUMO
L-RNA aptamers have been developed to target G-quadruplexes (G4s) and regulate G4-mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subjected to high failure rate. By analyzing the previously reported G4-binding L-RNA aptamers, we found that the stem-loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4-SLSELEX-Seq platform specifically for G4 targets by introducing a pre-defined stem-loop structure library during SELEX process. Using G4-SLSELEX-Seq, we rapidly identified an L-RNA aptamer, L-Apt1-12 for EBNA1 RNA G4 (rG4) in just three selection rounds. L-Apt1-12 maintained the stem-loop structure initially introduced, and possessed a unique G-triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. Notably, L-Apt1-12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards EBV-positive cancer cells, highlighting its potential for targeted therapy against EBV-associated cancers. Furthermore, we demonstrate the robustness and generality of G4-SLSELEX-Seq by selecting L-RNA aptamers for another two G4 targets-APP rG4 and HCV-1a rG4, also obtaining high-affinity aptamers in three selection rounds. These findings demonstrated G4-SLSELEX-Seq can be a robust and efficient platform for the selection of L-RNA aptamers targeting rG4.
RESUMO
One of the greatest unmet needs hindering the successful treatment of nasopharyngeal carcinomas (NPCs) is for representative physiological and cost-effective models. Although Epstein-Barr virus (EBV) infection is consistently present in NPCs, most studies have focused on EBV-negative NPCs. For the first time, we established and analyzed three-dimensional (3D) spheroid models of EBV-positive and EBV-negative NPC cells and compared these to classical two-dimensional (2D) cultures in various aspects of tumor phenotype and drug responses. Compared to 2D monolayers, the 3D spheroids showed significant increases in migration capacity, stemness characteristics, hypoxia and drug resistance. Co-culture with endothelial cells, which mimics essential interactions in the tumor microenvironment, effectively enhanced spheroid dissemination. Furthermore, RNA sequencing revealed significant changes at the transcriptional level in 3D spheroids compared to expression in 2D monolayers. In particular, we identified known (VEGF, AKT and mTOR) and novel (Wnt-ß-catenin and Eph-ephrin) cell signaling pathways that are activated in NPC spheroids. Targeting these pathways in 3D spheroids using FDA-approved drugs was effective in monoculture and co-culture. These findings provide the first demonstration of the establishment of EBV-positive and EBV-negative NPC 3D spheroids with features that resemble advanced and metastatic NPCs. Furthermore, we show that NPC spheroids have potential use in identifying new drug targets.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Efrinas , Herpesvirus Humano 4/metabolismo , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Transdução de Sinais , Microambiente Tumoral , beta Catenina/genética , beta Catenina/metabolismoRESUMO
The outbreak caused by the novel coronavirus SARS-CoV-2 has been declared a global health emergency. G-quadruplex structures in genomes have long been considered essential for regulating a number of biological processes in a plethora of organisms. We have analyzed and identified 25 four contiguous GG runs (G2NxG2NyG2NzG2) in the SARS-CoV-2 RNA genome, suggesting putative G-quadruplex-forming sequences (PQSs). Detailed analysis of SARS-CoV-2 PQSs revealed their locations in the open reading frames of ORF1 ab, spike (S), ORF3a, membrane (M) and nucleocapsid (N) genes. Identical PQSs were also found in the other members of the Coronaviridae family. The top-ranked PQSs at positions 13385 and 24268 were confirmed to form RNA G-quadruplex structures in vitro by multiple spectroscopic assays. Furthermore, their direct interactions with viral helicase (nsp13) were determined by microscale thermophoresis. Molecular docking model suggests that nsp13 distorts the G-quadruplex structure by allowing the guanine bases to be flipped away from the guanine quartet planes. Targeting viral helicase and G-quadruplex structure represents an attractive approach for potentially inhibiting the SARS-CoV-2 virus.
Assuntos
COVID-19/virologia , Quadruplex G , SARS-CoV-2/química , Humanos , Simulação de Acoplamento Molecular , Fases de Leitura AbertaRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1007484.].
RESUMO
Epstein-Barr virus (EBV) induces histone modifications to regulate signaling pathways involved in EBV-driven tumorigenesis. To date, the regulatory mechanisms involved are poorly understood. In this study, we show that EBV infection of epithelial cells is associated with aberrant histone modification; specifically, aberrant histone bivalent switches by reducing the transcriptional activation histone mark (H3K4me3) and enhancing the suppressive mark (H3K27me3) at the promoter regions of a panel of DNA damage repair members in immortalized nasopharyngeal epithelial (NPE) cells. Sixteen DNA damage repair family members in base excision repair (BER), homologous recombination, nonhomologous end-joining, and mismatch repair (MMR) pathways showed aberrant histone bivalent switches. Among this panel of DNA repair members, MLH1, involved in MMR, was significantly down-regulated in EBV-infected NPE cells through aberrant histone bivalent switches in a promoter hypermethylation-independent manner. Functionally, expression of MLH1 correlated closely with cisplatin sensitivity both in vitro and in vivo. Moreover, seven BER members with aberrant histone bivalent switches in the EBV-positive NPE cell lines were significantly enriched in pathway analysis in a promoter hypermethylation-independent manner. This observation is further validated by their down-regulation in EBV-infected NPE cells. The in vitro comet and apurinic/apyrimidinic site assays further confirmed that EBV-infected NPE cells showed reduced DNA damage repair responsiveness. These findings suggest the importance of EBV-associated aberrant histone bivalent switch in host cells in subsequent suppression of DNA damage repair genes in a methylation-independent manner.
Assuntos
Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Código das Histonas/genética , Histonas/genética , Ilhas de CpG/genética , Dano ao DNA/genética , Metilação de DNA/genética , Reparo de Erro de Pareamento de DNA/genética , Reparo do DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Regulação da Expressão Gênica/genética , Herpesvirus Humano 4/patogenicidade , Recombinação Homóloga/genética , Humanos , Proteína 1 Homóloga a MutL/genética , Nasofaringe/crescimento & desenvolvimento , Nasofaringe/patologia , Nasofaringe/virologia , Regiões Promotoras GenéticasRESUMO
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Assuntos
Transformação Celular Neoplásica/genética , Genômica , Neoplasias Nasofaríngeas/etiologia , Pesquisa Translacional Biomédica , Apoptose/genética , Sobrevivência Celular/genética , Transformação Celular Neoplásica/metabolismo , Epigênese Genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Genômica/métodos , Saúde Global , Herpesvirus Humano 4/fisiologia , Humanos , Vigilância Imunológica , Incidência , Terapia de Alvo Molecular , NF-kappa B/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/epidemiologia , Neoplasias Nasofaríngeas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt , Transdução de SinaisRESUMO
Abnormal metabolism and uncontrolled angiogenesis are two important characteristics of malignant tumors. The occurrence of both events involves many key molecular changes including miRNA. However, EBV encoded miRNAs are rarely mentioned as capable of regulating tumor metabolism and tumor angiogenesis. Here, we reported that one of the key miRNAs encoded by EBV, EBV-miR-Bart1-5P, can significantly promote nasopharyngeal carcinoma (NPC) cell glycolysis and induces angiogenesis in vitro and in vivo. Mechanistically, EBV-miR-Bart1-5P directly targets the α1 catalytic subunit of AMP-activated protein kinase (AMPKα1) and consequently regulates the AMPK/mTOR/HIF1 pathway which impelled NPC cell anomalous aerobic glycolysis and angiogenesis, ultimately leads to uncontrolled growth of NPC. Our findings provide new insights into metabolism and angiogenesis of NPC and new opportunities for the development of targeted NPC therapy in the future.
Assuntos
Infecções por Vírus Epstein-Barr , Glicólise/genética , Carcinoma Nasofaríngeo/virologia , Neovascularização Patológica/genética , RNA Viral , Transdução de Sinais/fisiologia , Adenilato Quinase/metabolismo , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/fisiopatologia , Herpesvirus Humano 4 , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , PTEN Fosfo-Hidrolase/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Epstein-Barr virus (EBV) infection is strongly associated with nasopharyngeal carcinoma, a common cancer in Southeast Asia and certain regions of Africa. However, the dynamics of EBV episome maintenance in infected nasopharyngeal epithelial (NPE) cells remain largely undefined. Here, we report the establishment of a highly efficient cell-free EBV infection method for NPE cells. By using this method, we have defined some of the dynamic events involved in the early stage of EBV infection in NPE cells. We report, for the first time, a rapid loss of EBV copies from infected NPE cells during the first 12-72 h post-infection. The rate of EBV loss slowed at later stages of infection. Live cell imaging revealed that the freshly infected NPE cells were delayed in entry into mitosis compared with uninfected cells. Freshly infected NPE cells transcribed significantly higher levels of lytic EBV genes BZLF1 and BMRF1 yet significantly lower levels of EBER1/2 than stably infected NPE cells. Notably, there were very low or undetectable levels of protein expressions of EBNA1, LMP1, Zta and Rta in freshly infected NPE cells, whereas EBNA1 and LMP1 proteins were readily detected in stable EBV-infected NPE cells. The kinetics of EBV loss and the differential EBV gene expression profiles between freshly and stably infected NPE cells are in line with the suggestion of epigenetic changes in the EBV genome that affect viral gene expression and the adaptation of host cells to EBV infection to maintain persistent EBV infection in NPE cells.
Assuntos
Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Nasofaringe/virologia , Linhagem Celular , Epigênese Genética/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Transativadores/genética , Transcriptoma/genéticaRESUMO
BACKGROUND: Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. METHODS: To specifically test the impact of interaction on invasive potential two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia and invade in a spheroid invasion assay. RESULTS: Interestingly when the PDAC cells were co-cultured with undifferentiated THP1 monocyte-like cells invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. CONCLUSIONS: Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC.
Assuntos
Carcinoma Ductal Pancreático/metabolismo , Comunicação Celular/fisiologia , Monócitos/metabolismo , Neoplasias Pancreáticas/metabolismo , Podossomos/patologia , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Técnicas de Cocultura , Humanos , Monócitos/patologia , Neoplasias Pancreáticas/patologia , Podossomos/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Células THP-1 , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Microambiente TumoralRESUMO
Epstein-Barr virus (EBV) infects more than 90% of the adult human population. Undifferentiated nasopharyngeal carcinoma (NPC) is common in Southeast Asia, with a particularly high incidence among southern Chinese. The EBV genome can be detected in practically all cancer cells in undifferentiated NPC. The role of EBV in pathogenesis of undifferentiated NPC remains elusive. NPC cell lines are known to be difficult to establish in culture. The EBV+ve NPC cell lines, even if established in culture, rapidly lost their EBV episomes upon prolonged propagation. At present, the C666-1 NPC cell line, which is defective in lytic EBV reactivation, is the only EBV+ve NPC cell line available for NPC and EBV research. The need to establish new and representative NPC cell lines is eminent for NPC and EBV research. In this study, we report the use of the Rho-associated kinase inhibitor (Y-27632) has facilitated the establishment of a new EBV+ve NPC cell line from an earlier established NPC xenograft, C17. The C17 cell line was tumorigenic in immune-deficient mice (NOD/SCID). It retained the EBV episomes and could be induced to undergo productive lytic reactivation of EBV to generate infectious virus particles. The C17 cell line represents a new investigative tool for NPC and EBV studies. The ability of C17 to undergo lytic reactivation is unique and opens up the opportunity to examine regulation of latent and lytic infection of EBV and their contributions to NPC pathogenesis.
Assuntos
Infecções por Vírus Epstein-Barr/patologia , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Ativação Viral , Animais , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/virologia , Genoma Viral/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Cariotipagem , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/virologia , Transplante Heterólogo , Carga TumoralRESUMO
Accumulating evidence indicates that oncogenic viral protein plays a crucial role in activating aerobic glycolysis during tumorigenesis, but the underlying mechanisms are largely undefined. Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a transmembrane protein with potent cell signaling properties and has tumorigenic transformation property. Activation of NF-κB is a major signaling pathway mediating many downstream transformation properties of LMP1. Here we report that activation of mTORC1 by LMP1 is a key modulator for activation of NF-κB signaling to mediate aerobic glycolysis. NF-κB activation is involved in the LMP1-induced upregulation of glucose transporter 1 (Glut-1) transcription and growth of nasopharyngeal carcinoma (NPC) cells. Blocking the activity of mTORC1 signaling effectively suppressed LMP1-induced NF-κB activation and Glut-1 transcription. Interfering NF-κB signaling had no effect on mTORC1 activity but effectively altered Glut-1 transcription. Luciferase promoter assay of Glut-1 also confirmed that the Glut-1 gene is a direct target gene of NF-κB signaling. Furthermore, we demonstrated that C-terminal activating region 2 (CTAR2) of LMP1 is the key domain involved in mTORC1 activation, mainly through IKKß-mediated phosphorylation of TSC2 at Ser939 Depletion of Glut-1 effectively led to suppression of aerobic glycolysis, inhibition of cell proliferation, colony formation, and attenuation of tumorigenic growth property of LMP1-expressing nasopharyngeal epithelial (NPE) cells. These findings suggest that targeting the signaling axis of mTORC1/NF-κB/Glut-1 represents a novel therapeutic target against NPC.IMPORTANCE Aerobic glycolysis is one of the hallmarks of cancer, including NPC. Recent studies suggest a role for LMP1 in mediating aerobic glycolysis. LMP1 expression is common in NPC. The delineation of essential signaling pathways induced by LMP1 in aerobic glycolysis contributes to the understanding of NPC pathogenesis. This study provides evidence that LMP1 upregulates Glut-1 transcription to control aerobic glycolysis and tumorigenic growth of NPC cells through mTORC1/NF-κB signaling. Our results reveal novel therapeutic targets against the mTORC1/NF-κB/Glut-1 signaling axis in the treatment of EBV-infected NPC.
Assuntos
Transportador de Glucose Tipo 1/biossíntese , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas da Matriz Viral/metabolismo , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transcrição GênicaRESUMO
To establish persistent infection in cells, viruses evolve strategies to alter host cellular pathways to regulate cell proliferation and energy metabolism which support viral infection. Epstein-Barr virus (EBV) undergoes both lytic and latent infection to achieve persistent and lifelong infection in human. EBV readily infects human B cells, driving their transformation to proliferative lymphoblastoid cell lines (LCL), and eventually establishes lifelong latent infection in memory B cells. In contrary, EBV undergoes lytic replication upon infection into normal epithelial cells which is essential for the replication of EBV genome and production of infectious viral particles for transmission through saliva. EBV shuttles between B cells and epithelial cells to complete its infection cycle. EBV infection is closely associated with nasopharyngeal carcinoma (NPC) and is present in practically 100% of undifferentiated NPC. In contrast to undergo lytic infection of normal pharyngeal epithelium, EBV establishes latent infection in NPC. The switch from lytic infection to latent infection may represent an early and essential step in the development of NPC. Recent studies in both B cells and NPC cells latently infected with EBV reveal alterations in cell metabolism to support persistent and latent EBV infection. Events underlying the switching of lytic to latent EBV infection in NPC cells are largely undefined. Molecular events and alterations of cell metabolism are likely to play crucial roles in switching EBV infection from lytic to latent in NPC cells. Latent EBV infection and expression of viral genes, including LMP1, LMP2, and possibly EBV-encoded micro RNAs, may play essential roles in alterations of cell metabolism to support NPC pathogenesis. Alteration of energy metabolism is an essential hallmark of cancer. The role of altered energy metabolism in host cells in modulating latent and lytic EBV infection in NPC cells is unclear. In this review, we will discuss the impact of genetic alterations in NPC to module cellular metabolism and its influence on latent infection and lytic reactivation of EBV infection in NPC cells. In particular, the role of EBV-encoded genes in driving glucose metabolism and their contribution to NPC pathogenesis will be discussed. This new perspective on the interplay between EBV infection and altered host metabolic pathways in NPC pathogenesis may offer novel and effective therapeutic strategies in the treatment of NPC and other EBV-associated malignancies.
Assuntos
Carcinoma/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Glucose/metabolismo , Interações Hospedeiro-Patógeno/genética , Neoplasias Nasofaríngeas/metabolismo , Carcinoma/genética , Carcinoma/patologia , Carcinoma/virologia , Replicação do DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidade , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologiaRESUMO
Hepatocellular carcinoma (HCC) is an invasive cancer with a high rate of recurrence and metastasis. Agents with anti-proliferative as well as anti-metastatic activity will be ideal for effective treatment. Here, we demonstrated that berberine, an isoquinoline alkaloid, harbored potent anti-metastatic and anti-proliferative activities in vivo. Using an orthotopic model of HCC (MHCC-97L), which spontaneously develops lung metastases (one of the most common sites of HCC metastasis), we found that berberine treatment (10mg/kg/2days) significantly reduced lung metastasis from the liver tumors by ~85% (quantitated by bioluminescence emitted from lung metastases). Histological examination also confirmed the reduced incidence and number of lung metastases in berberine-treated mice. Furthermore, berberine effectively suppressed extra-tumor invasion of the primary HCC implant into the surrounding normal liver tissue, illustrating its potent anti-metastatic action in vivo. Consistent with previous reports in other cancer, berberine's anti-tumor activity was accompanied by suppression of cellular proliferation, invasiveness and HIF-1α/VEGF signaling. Strikingly, further mechanistic investigation revealed that berberine exerted profound inhibitory effect on the expression of Id-1, which is a key regulator for HCC development and metastasis. Berberine could suppress the transcription level of Id-1 through inhibiting its promotor activity. Specific downregulation of Id-1 by knocking down its RNA transcripts in HCC cells inhibited cellular growth, invasion and VEGF secretion, demonstrating the functional relevance of Id-1 downregulation induced by berberine. Lastly, berberine's anti-proliferative and anti-invasive activities could be partially rescued by Id-1 overexpression in HCC models, revealing a novel anti-cancer/anti-invasive mechanism of berberine via Id-1 suppression.
Assuntos
Berberina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína 1 Inibidora de Diferenciação/biossíntese , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Proteínas de Neoplasias/biossíntese , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
NF-κB is a key regulator of inflammatory response and is frequently activated in human cancer including the undifferentiated nasopharyngeal carcinoma (NPC), which is common in Southern China including Hong Kong. Activation of NF-κB is common in NPC and may contribute to NPC development. The role of NF-κB activation in immortalization of nasopharyngeal epithelial (NPE) cells, which may represent an early event in NPC pathogenesis, is unknown. Examination of NF-κB activation in immortalization of NPE cells is of particular interest as the site of NPC is often heavily infiltrated with inflammatory cellular components. We found that constitutive activation of NF-κB signaling is a common phenotype in telomerase-immortalized NPE cell lines. Our results suggest that NF-κB activation promotes the growth of telomerase-immortalized NPE cells, and suppression of NF-κB activity inhibits their proliferation. Furthermore, we observed upregulation of c-Myc, IL-6 and Bmi-1 in our immortalized NPE cells. Inhibition of NF-κB downregulated expression of c-Myc, IL-6 and Bmi-1, suggesting that they are downstream events of NF-κB activation in immortalized NPE cells. We further delineated that EGFR/MEK/ERK/IKK/mTORC1 is the key upstream pathway of NF-κB activation in immortalized NPE cells. Elucidation of events underlying immortalization of NPE cells may provide insights into early events in pathogenesis of NPC. The identification of NF-κB activation and elucidation of its activation mechanism in immortalized NPE cells may reveal novel therapeutic targets for treatment and prevention of NPC.
Assuntos
NF-kappa B/fisiologia , Neoplasias Nasofaríngeas/etiologia , Nasofaringe/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais , Receptores ErbB/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/fisiologia , Complexo Repressor Polycomb 1/fisiologia , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologiaRESUMO
The close association of Epstein-Barr virus (EBV) infection with non-keratinizing nasopharyngeal carcinomas and a subset of gastric carcinomas suggests that EBV infection is a crucial event in these cancers. The difficulties encountered in infecting and transforming primary epithelial cells in experimental systems suggest that the role of EBV in epithelial malignancies is complex and multifactorial in nature. Genetic alterations in the premalignant epithelium may support the establishment of latent EBV infection, which is believed to be an initiation event. Oncogenic properties have been reported in multiple EBV latent genes. The BamH1 A rightwards transcripts (BARTs) and the BART-encoded microRNAs (miR-BARTs) are highly expressed in EBV-associated epithelial malignancies and may induce malignant transformation. However, enhanced proliferation may not be the crucial function of EBV infection in epithelial malignancies, at least in the early stages of cancer development. EBV-encoded gene products may confer anti-apoptotic properties and promote the survival of infected premalignant epithelial cells harbouring genetic alterations. Multiple EBV-encoded microRNAs have been reported to have immune evasion functions. Genetic alterations in host cells, as well as inflammatory stroma, could modulate the expression of EBV genes and alter the growth properties of infected premalignant epithelial cells, encouraging their selection during carcinogenesis.
Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/patogenicidade , Neoplasias Epiteliais e Glandulares/virologia , Animais , Biópsia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/patologia , Genótipo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Patologia Molecular/métodos , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco , Virologia/métodos , Virulência , Ativação Viral , Latência ViralRESUMO
The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-ß-Transducin Repeat Containing Protein (SCFß-TrCP) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of ß-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine's potential as an anti-tumor agent for clinical cancer therapy.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Berberina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Ciclina D1/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ubiquitina/genética , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Contendo Repetições de beta-Transducina/antagonistas & inibidores , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismoRESUMO
Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4(R24C)) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV.
Assuntos
Ciclina D1/genética , Ciclina D1/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Nasofaringe/metabolismo , Sequência de Bases , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Transformação Celular Viral , Células Cultivadas , Senescência Celular , DNA Viral/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Expressão Gênica , Genes Virais , Genes bcl-1 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Humanos , Neoplasias Nasofaríngeas/etiologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Nasofaringe/patologia , Nasofaringe/virologia , Lesões Pré-Cancerosas/etiologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transdução de Sinais , Telomerase/genética , Telomerase/metabolismoRESUMO
Epstein-Barr virus (EBV) infection is closely associated with undifferentiated nasopharyngeal carcinoma (NPC), strongly implicating a role for EBV in NPC pathogenesis; conversely, EBV infection is rarely detected in normal nasopharyngeal epithelial tissues. In general, EBV does not show a strong tropism for infecting human epithelial cells, and EBV infection in oropharyngeal epithelial cells is believed to be lytic in nature. To establish life-long infection in humans, EBV has evolved efficient strategies to infect B cells and hijack their cellular machinery for latent infection. Lytic EBV infection in oropharyngeal epithelial cells, though an infrequent event, is believed to be a major source of infectious EBV particles for salivary transmission. The biological events associated with nasopharyngeal epithelial cells are only beginning to be understood with the advancement of EBV infection methods and the availability of nasopharyngeal epithelial cell models for EBV infection studies. EBV infection in human epithelial cells is a highly inefficient process compared to that in B cells, which express the complement receptor type 2 (CR2) to mediate EBV infection. Although receptor(s) on the epithelial cell surface for EBV infection remain(s) to be identified, EBV infection in epithelial cells could be achieved via the interaction of glycoproteins on the viral envelope with surface integrins on epithelial cells, which might trigger membrane fusion to internalize EBV in cells. Normal nasopharyngeal epithelial cells are not permissive for latent EBV infection, and EBV infection in normal nasopharyngeal epithelial cells usually results in growth arrest. However, genetic alterations in premalignant nasopharyngeal epithelial cells, including p16 deletion and cyclin D1 overexpression, could override the growth inhibitory effect of EBV infection to support stable and latent EBV infection in nasopharyngeal epithelial cells. The EBV episome in NPC is clonal in nature, suggesting that NPC develops from a single EBV-infected nasopharyngeal epithelial cell, and the establishment of persistent and latent EBV infection in premalignant nasopharyngeal epithelium may represent an early and critical event for NPC development.
Assuntos
Transformação Celular Neoplásica , Células Epiteliais , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Carcinoma , Células Cultivadas , Herpesvirus Humano 4 , Humanos , Carcinoma Nasofaríngeo , Nasofaringe , Lesões Pré-CancerosasRESUMO
EBV-associated human malignancies may originate from B cells and epithelial cells. EBV readily infects B cells in vitro and transforms them into proliferative lymphoblastoid cell lines. In contrast, infection of human epithelial cells in vitro with EBV has been difficult to achieve. The lack of experimental human epithelial cell systems for EBV infection has hampered the understanding of biology of EBV infection in epithelial cells. The recent success to infect human epithelial cells with EBV in vitro has allowed systematic investigations into routes of EBV entry, regulation of latent and lytic EBV infection, and persistence of EBV infection in infected epithelial cells. Understanding the biology of EBV infection in human epithelial cells will provide important insights to the role of EBV infection in the pathogenesis of EBV-associated epithelial malignancies including nasopharyngeal carcinoma and gastric carcinoma.