Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicology ; 31(7): 1111-1119, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841472

RESUMO

The concentrations, distribution, and ecological risks of 24 typical antibiotics in Hong Kong rivers and seawater were investigated using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UHPLC-EI-MS/MS). The results showed that the select antibiotics were widely distributed in the study area. Among the target antibiotics, the detection rate of tetracyclines (TCs) was 100%, which indicated the widespread use of TCs in Hong Kong. The detection rates of sulfonamides (SAs) (57.1-100%), fluoroquinolones (FQs) (78.6-100%), roxithromycin (RTM) (50%) and novobiocin (NOV) (50%) were all above 50%. Compared with river water (7.9-114.26 ng/L, medium: 27.7 ng/L), concentrations of the most antibiotics in seawater (9.5-32.0 ng/L, medium: 13.3 ng/L) were lower; seawater concentrations were similar to those reported from other coastal cities, such as Guangzhou and Zhuhai in China, which implied that the source of marine antibiotic pollution may be the nearby rivers, and the vastness of the ocean causes environmental dilution of antibiotics. According to the ratio of the measured environmental concentration (MEC) to the predicted no-effect concentration (PNEC), ofloxacin (OFX) (average risk quotient: 1.94E-01) and ciprofloxacin (CFX) (average risk quotient: 3.53E-01) posed medium to high ecological risk in most places, whereas other antibiotics posed lower risk. In Yuen Long, where there were many livestock farms nearby, the detected concentration of antibiotics was higher, indicating that livestock wastewater may be the major reason for the increase in antibiotic levels in this area. In general, the detected concentration of antibiotics in Hong Kong was lower than that in the United States, Japan, the United Kingdom, and coastal areas of China, but the long-term existence of low concentrations of antibiotics also poses great risks. According to the risk assessment, Hong Kong should pay more attention to the use of FQs (e.g., OFX and CFX) in the future.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , China , Monitoramento Ambiental/métodos , Fluoroquinolonas/análise , Medição de Risco , Rios/química , Espectrometria de Massas em Tandem , Água/análise , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 41(10): 2613-2621, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899985

RESUMO

Increased disinfection efforts in various parts of China, including Hong Kong, to prevent the spread of the novel coronavirus may lead to elevated concentrations of disinfectants in domestic sewage and surface runoff in Hong Kong, generating large quantities of toxic disinfection byproducts. Our study investigated the presence and distribution of four trihalomethanes (THMs), six haloacetic acids (HAAs), and eight nitrosamines (NAMs) in rivers and seawater in Hong Kong. The concentrations of THMs (mean concentration: 1.6 µg/L [seawater], 3.0 µg/L [river water]), HAAs (mean concentration: 1.4 µg/L [seawater], 1.9 µg/L [river water]), and NAMs (mean concentration: 4.4 ng/L [seawater], 5.6 ng/L [river water]) did not significantly differ between river water and seawater. The total disinfection byproduct content in river water in Hong Kong was similar to that in Wuhan and Beijing (People's Republic of China), and the total THM concentration in seawater was significantly higher than that before the COVID-19 pandemic. Among the regulated disinfection byproducts, none of the surface water samples exceeded the maximum index values for THM4 (80 µg/L), HAA5 (60 µg/L), and nitrosodimethylamine (100 ng/L) in drinking water. Among the disinfection byproducts detected, bromoform in rivers and seawater poses the highest risk to aquatic organisms, which warrants attention and mitigation efforts. Environ Toxicol Chem 2022;41:2613-2621. © 2022 SETAC.


Assuntos
COVID-19 , Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Desinfetantes/análise , Desinfecção , Halogenação , Hong Kong , Humanos , Pandemias , Projetos Piloto , Esgotos , Trialometanos/análise , Poluentes Químicos da Água/análise
3.
Environ Int ; 133(Pt B): 105246, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675567

RESUMO

Benzophenones (BPs) and other ultra violet (UV) filters (UV-filters) are widely used in sunblock and other personal care products, raising concerns about their adverse health risks to human, especially for children. In the present study, BP-type UV-filters and other four widely used UV-filters were evaluated in the child urinary samples (4-6 years, n = 53), tap water and commercial distilled water in Hong Kong. The results suggested that the target chemicals are ubiquitous in the subject. BP1, BP2, BP3 and BP4 in children urine samples contributed closely to the overall children exposure of UV filters, with detection rates above 58% and geometric means ranging from 44.2 to 76.7 ng/mL. As a contrast, BP3 was the major substance found in the tap water and distilled bottle water, with detection rates of 100% and geometric means of 9.64 and 14.5 ng/L, respectively. There were some significant relationships between urinary UV filters and personal characteristics (BMI values, sex, income level, hand washing frequency, and body location usage), but the health risks associated with UV-filters in Hong Kong children might not be concerning. Only two children applied sun creams in this research, indicating that there were other sources to exposure these chemicals.


Assuntos
Benzofenonas/urina , Água Potável/química , Exposição Ambiental/análise , Protetores Solares/análise , Poluentes Químicos da Água/urina , Benzofenonas/análise , Pré-Escolar , Hong Kong , Humanos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA