Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 413, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195553

RESUMO

Near infrared energy remains untapped toward the maneuvering of entire solar spectrum harvesting for fulfilling the nuts and bolts of solar hydrogen production. We report the use of Au@Cu7S4 yolk@shell nanocrystals as dual-plasmonic photocatalysts to achieve remarkable hydrogen production under visible and near infrared illumination. Ultrafast spectroscopic data reveal the prevalence of long-lived charge separation states for Au@Cu7S4 under both visible and near infrared excitation. Combined with the advantageous features of yolk@shell nanostructures, Au@Cu7S4 achieves a peak quantum yield of 9.4% at 500 nm and a record-breaking quantum yield of 7.3% at 2200 nm for hydrogen production in the absence of additional co-catalysts. The design of a sustainable visible- and near infrared-responsive photocatalytic system is expected to inspire further widespread applications in solar fuel generation. In this work, the feasibility of exploiting the localized surface plasmon resonance property of self-doped, nonstoichiometric semiconductor nanocrystals for the realization of wide-spectrum-driven photocatalysis is highlighted.

2.
ACS Appl Mater Interfaces ; 14(36): 40771-40783, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040289

RESUMO

In this work, we demonstrated the practical use of Au@Cu2O core-shell and Au@Cu2Se yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H2) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@Cu2O core-shell nanocrystal template. Au@Cu2O and Au@Cu2Se displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the Cu2O and Cu2Se shells. The localized surface plasmon resonance (LSPR) of Au, on the other hand, can facilitate additional charge carrier generation for Cu2O and Cu2Se. Finite-difference time-domain simulations were carried out to explore the amplification of the localized electromagnetic field induced by the LSPR of Au. The charge transfer dynamics and band alignment of the samples were examined with time-resolved photoluminescence and ultraviolet photoelectron spectroscopy. As a result of the improved interfacial charge transfer, Au@Cu2O and Au@Cu2Se exhibited a substantially larger photocurrent of water reduction and higher photocatalytic activity of H2 production than the corresponding pure counterpart samples. Incident photon-to-current efficiency measurements were conducted to evaluate the contribution of the plasmonic effect of Au to the enhanced photoactivity. Relative to Au@Cu2O, Au@Cu2Se was more suited for PEC water splitting and photocatalytic H2 production by virtue of the structural advantages of yolk-shell architectures. The demonstrations from the present work may shed light on the rational design of sophisticated metal-semiconductor yolk-shell nanocrystals, especially those comprising metal selenides, for superior photocatalytic applications.

3.
ACS Appl Mater Interfaces ; 13(18): 21186-21193, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905241

RESUMO

Flexible electronics has recently captured extensive attention due to its intriguing functionalities and great potential for influencing our daily life. In addition, with the increasing demand for green energy, photoelectrochemical (PEC) water splitting is a clean process that directly converts solar energy to chemical energy in the form of hydrogen. Thus the development of flexible green energy electronics represents a new domain in the research field of energy harvesting. In this work, we demonstrate the BiVO4 (BVO)/WO3/ITO/muscovite heterostructure photoelectrode for water splitting with flexible characteristics. The performance of BVO was modified by specific crystal facets, and the BVO/WO3 bilayer exhibited superior performance of 33% enhanced PEC activity at 1 V vs Ag/AgCl compared with pure BVO due to the proper staggered band alignment. Moreover, excellent mechanical stability was verified by a series of bending modes. This study demonstrates a pathway to a flexible photoelectrode for developing innovative devices for solar fuel generation.

4.
Chem Commun (Camb) ; 55(17): 2465-2468, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30734787

RESUMO

This work reports the novelty of using eco-friendly and cost-effective non-vacuum Electrostatic Spray-Assisted Vapour Deposited Cu(In,Ga)SSe (CIGS) thin films as photocathodes, combined with the earth abundant cobalt sulfide (Co-S) as a catalyst to accelerate the kinetics of photogenerated electron transfer and hydrogen generation for photoelectrochemical water splitting. CdS and ZnO layers were subsequently deposited on top of the selenised CIGS films to increase the charge separation and lower the charge recombination for the photocathodes. In order to improve the lifetime and scalability of the CIGS photocathode and the other cell components, a photoelectrochemical test was conducted in a neutral electrolyte of 0.5 M Na2SO4 under simulated sunlight (AM 1.5G). Both the photocurrent densities and the onset potentials of the photocathodes were significantly improved by the electrodeposition of the low cost and earth-abundant Co-S catalyst, with a photocurrent density as high as 19.1 mA cm-2 at -0.34 V vs. reversible hydrogen electrode (RHE), comparable with and even higher than that of the control photocathode using rare and precious Pt as a catalyst.

5.
Water Res ; 45(15): 4562-70, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21719066

RESUMO

A laboratory study was undertaken to explore the role of mass transfer in overall substrate removal rate and the subsequent kinetic behavior in a glucose-fed sequential aerobic sludge blanket (SASB) reactor. At the organic loading rates (OLRs) of 2-8 kg chemical oxygen demand (COD)/m3-d, the SASB reactor removed over 98% of COD from wastewater. With an increase in OLR, the average granule diameter (dp=1.1-1.9 mm) and the specific oxygen utilization rate increased; whereas biomass density of granules and solids retention time decreased (13-32 d). The intrinsic and apparent kinetic parameters were evaluated using break-up and intact granules, respectively. The calculated COD removal efficiencies using the kinetic model (incorporating intrinsic kinetics) and empirical model (incorporating apparent kinetics) agreed well with the experimental results, implying that both models can properly describe the overall substrate removal rate in the SASB reactor. By applying the validated kinetic model, the calculated mass transfer parameter values and the simulated substrate concentration profiles in the granule showed that the overall substrate removal rate is intra-granular diffusion controlled. By varying different dp within a range of 0.1-3.5 mm, the simulated COD removal efficiencies disclosed that the optimal granular size could be no greater than 2.5 mm.


Assuntos
Reatores Biológicos , Esgotos/microbiologia , Aerobiose , Análise da Demanda Biológica de Oxigênio , Biomassa , Cinética , Modelos Químicos , Oxigênio/metabolismo , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA