Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 13(4): 1422-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23432577

RESUMO

A 3D trenched-structure metal-insulator-metal (MIM) nanocapacitor array with an ultrahigh equivalent planar capacitance (EPC) of ~300 µF cm(-2) is demonstrated. Zinc oxide (ZnO) and aluminum oxide (Al2O3) bilayer dielectric is deposited on 1 µm high biomimetic silicon nanotip (SiNT) substrate using the atomic layer deposition method. The large EPC is achieved by utilizing the large surface area of the densely packed SiNT (!5 × 10(10) cm(-2)) coated conformally with an ultrahigh dielectric constant of ZnO. The EPC value is 30 times higher than those previously reported in metal-insulator-metal or metal-insulator-semiconductor nanocapacitors using similar porosity dimensions of the support materials.


Assuntos
Materiais Biomiméticos , Capacitância Elétrica , Óxido de Zinco/química , Metais/química , Nanoestruturas/química , Tamanho da Partícula , Porosidade , Silício/química
2.
ACS Appl Mater Interfaces ; 12(36): 40426-40432, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32790275

RESUMO

The formation of thin and uniform capacitive layers for fully interacting with an electrolyte in a supercapacitor is a key challenge to achieve optimal capacitance. Here, we demonstrate a binder-free and flexible supercapacitor with the electrode made of cobalt oxide nanoparticle (CoO NP)-wrapped graphene hollow nanoballs (GHBs). The growth process of Co(OH)2 NPs, which could subsequently be thermally annealed to CoO NPs, was monitored by in situ electrochemical liquid transmission electron microscopy (TEM). In the dynamic growth of Co(OH)2 NPs on a film of GHBs, the lateral formation of fan-shaped clusters of Co(OH)2 NPs spread over the surface of GHBs was observed by in situ TEM. This CoO-GHBs/CC electrode exhibits high specific capacitance (2238 F g-1 at 1 A g-1) and good rate capability (1170 F g-1 at 15 A g-1). The outstanding capacitive performance and good rate capability of the CoO-GHBs/CC electrode were achieved by the synergistic combination of highly pseudocapacitive CoO and electrically conductive GHBs with large surface areas. A solid-state symmetric supercapacitor (SSC), with CoO-GHBs/CCs used for both positive and negative electrodes, exhibits high power density (6000 W kg-1 at 8.2 Wh kg-1), high energy density (16 Wh kg-1 at 800 W kg-1), cycling stability (∼100% capacitance retention after 5000 cycles), and excellent mechanical flexibility at various bending positions. Finally, a serial connection of four SSC devices can efficiently power a red light-emitting diode after being charged for 20 s, demonstrating the practical application of this CoO-GHBs/CC-based SSC device for efficient energy storage.

3.
ACS Appl Mater Interfaces ; 12(31): 34815-34824, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32657118

RESUMO

Novel polymorphic MoxW1-xTe2-based counter electrodes possess high carrier mobility, phase-dependent lattice distortion, and surface charge density wave to boost the charge-transfer kinetics and electrocatalytic activity in dye-sensitized solar cells (DSSCs). Here, we report the syntheses of stoichiometry-controlled binary and ternary MoxW1-xTe2 nanowhiskers directly on carbon cloth (CC), denoted by MoxW1-xTe2/CC, with an atmospheric chemical vapor deposition technique. The synthesized MoxW1-xTe2/CC samples, including 1T'-MoTe2/CC, Td-WTe2/CC, Td-Mo0.26W0.73Te2.01/CC, and 1T'- & Td-Mo0.66W0.32Te2.02/CC, were then employed as different counter electrodes to study their electrochemical activities and efficiencies in DSSCs. The photovoltaic parameter analysis manifests that MoxW1-xTe2/CCs are more stable than a standard Pt/CC in the I-/I3- electrolyte examined by cyclic voltammetry over 100 cycles. A 1T'- & Td-Mo0.66W0.32Te2.02/CC-based DSSC can achieve a photocurrent density of 16.29 mA cm-2, a maximum incident photon-to-electron conversion efficiency of 90% at 550 nm excitation, and an efficiency of 9.40%, as compared with 8.93% of the Pt/CC counterpart. Moreover, the 1T'- & Td-Mo0.66W0.32Te2.02/CC shows lower charge-transfer resistance (0.62 Ω cm2) than a standard Pt/CC (1.19 Ω cm2) in electrocatalytic reactions. Notably, MoxW1-xTe2 nanowhiskers act as an electron expressway by shortening the path of carrier transportation in the axial direction from a counter electrode to electrolytic ions to enhance the reaction kinetics in DSSCs. This work demonstrates that the nanowhisker-structured 1T'- & Td-Mo0.66W0.32Te2.02/CC with high carrier mobility and robust surface states can serve as a highly efficient counter electrode in DSSCs to replace the conventional Pt counter electrode for electrocatalytic applications.

4.
ACS Appl Mater Interfaces ; 10(15): 12311-12316, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29611693

RESUMO

A graphene field-effect transistor (G-FET) with the spacious planar graphene surface can provide a large-area interface with cell membranes to serve as a platform for the study of cell membrane-related protein interactions. In this study, a G-FET device paved with a supported lipid bilayer (referred to as SLB/G-FET) was first used to monitor the catalytic hydrolysis of the SLB by phospholipase D. With excellent detection sensitivity, this G-FET was also modified with a ganglioside GM1-enriched SLB (GM1-SLB/G-FET) to detect cholera toxin B. Finally, the GM1-SLB/G-FET was employed to monitor amyloid-beta 40 (Aß40) aggregation. In the early nucleation stage of Aß40 aggregation, while no fluorescence was detectable with traditional thioflavin T (ThT) assay, the prominent electrical signals probed by GM1-SLB/G-FET demonstrate that the G-FET detection is more sensitive than the ThT assay. The comprehensive kinetic information during the Aß40 aggregation could be collected with a GM1-SLB/G-FET, especially covering the kinetics involved in the early stage of Aß40 aggregation. These experimental results suggest that SLB/G-FETs hold great potential as a powerful biomimetic sensor for versatile investigations of membrane-related protein functions and interaction kinetics.


Assuntos
Técnicas Biossensoriais , Membrana Celular , Gangliosídeo G(M1) , Grafite , Bicamadas Lipídicas
5.
ACS Appl Mater Interfaces ; 9(30): 25067-25072, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28727411

RESUMO

In this study, we report a novel, one-step synthesis method to fabricate multilayer graphene (MLG)-wrapped copper nanoparticles (CuNPs) directly on various substrates (e.g., polyimide film (PI), carbon cloth (CC), or Si wafer (Si)). The electrical resistivities of the pristine MLG-CuNPs/PI and MLG-CuNPs/Si were measured 1.7 × 10-6 and 1.4 × 10-6 Ω·m, respectively, of which both values are ∼100-fold lower than earlier reports. The MLG shell could remarkably prevent the Cu nanocore from serious damages after MLG-CuNPs being exposed to various harsh conditions. Both MLG-CuNPs/PI and MLG-CuNPs/Si retained almost their conductivities after ambient annealing at 150 °C. Furthermore, the flexible MLG-CuNPs/PI exhibits excellent mechanical durability after 1000 bending cycles. We also demonstrate that the MLG-CuNPs/PI can be used as promising source-drain electrodes in fabricating flexible graphene-based field-effect transistor (G-FET) devices. Finally, the MLG-CuNPs/CC was shown to possess high performance and durability toward hydrogen evolution reaction (HER).

6.
ACS Appl Mater Interfaces ; 7(12): 6683-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25769080

RESUMO

In this study, we investigate the effects of fluorinated poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) buffer layer on the performance of polymer photovoltaic cells. We demonstrate for the first time, the deterioration of the device performance can be effectively mended by modifying the interface between the active layer and buffer layer with heptadecafluoro-1,1,2,2-tetra-hydro-decyl trimethoxysilane (PFDS) and perfluorononane. Device performance shows a substantial enhancement of short-circuit current from 7.90 to 9.39 mA/cm(2) and fill factor from 27% to 53%. The overall device efficiency was improved from 0.98% to 3.12% for PFDS modified device. The mechanism of S-shape curing is also discussed. In addition, the stability of modified devices shows significant improvement than those without modification. The efficiency of the modified devices retains about half (1.88%) of its initial efficiency (4.1%) after 30 d compared to the unmodified ones (0.61%), under air atmosphere.

7.
Nanoscale ; 5(1): 262-8, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23160369

RESUMO

Photocatalytic conversion of carbon dioxide (CO(2)) to hydrocarbons such as methanol makes possible simultaneous solar energy harvesting and CO(2) reduction, two birds with one stone for the energy and environmental issues. This work describes a high photocatalytic conversion of CO(2) to methanol using graphene oxides (GOs) as a promising photocatalyst. The modified Hummer's method has been applied to synthesize the GO based photocatalyst for the enhanced catalytic activity. The photocatalytic CO(2) to methanol conversion rate on modified graphene oxide (GO-3) is 0.172 µmol g cat(-1) h(-1) under visible light, which is six-fold higher than the pure TiO(2).


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/efeitos da radiação , Grafite/química , Grafite/efeitos da radiação , Metanol/química , Catálise , Luz , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA