RESUMO
Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.
Assuntos
Lipofuscinoses Ceroides Neuronais , Receptores de AMPA , Humanos , Masculino , Feminino , Criança , Camundongos , Animais , Receptores de AMPA/fisiologia , Lipofuscinoses Ceroides Neuronais/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Modelos Animais de Doenças , Homeostase , Lipídeos , Plasticidade NeuronalRESUMO
BACKGROUND: Specialized brain endothelial cells and human APOE3 are independently important for neurovascular function, yet whether APOE3 expression by endothelial cells contributes to brain function is currently unknown. In the present study, we determined whether the loss of endothelial cell APOE3 impacts brain vascular and neural function. METHODS: We developed APOE3fl/fl/Cdh5(PAC)-CreERT2+/- (APOE3Cre+/-) and APOE3fl/fl/Cdh5(PAC)-CreERT2-/- (APOE3Cre-/-, control) mice and induced endothelial cell APOE3 knockdown with tamoxifen at ≈4 to 5 weeks of age. Neurovascular and neuronal function were evaluated by biochemistry, immunohistochemistry, behavioral testing, and electrophysiology at 9 months of age. RESULTS: We found that the loss of endothelial APOE3 expression was sufficient to cause neurovascular dysfunction including higher permeability and lower vessel coverage in tandem with deficits in spatial memory and fear memory extinction and a disruption of cortical excitatory/inhibitory balance. CONCLUSIONS: Our data collectively support the novel concept that endothelial APOE3 plays a critical role in the regulation of the neurovasculature, neural circuit function, and behavior.
Assuntos
Encéfalo , Células Endoteliais , Camundongos , Humanos , Animais , Apolipoproteína E3/metabolismo , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Apolipoproteína E4RESUMO
In presynaptic terminals, membrane-delimited Gi/o-mediated presynaptic inhibition is ubiquitous and acts via Gßγ to inhibit Ca2+ entry, or directly at SNARE complexes to inhibit Ca2+-dependent synaptotagmin-SNARE complex interactions. At CA1-subicular presynaptic terminals, 5-HT1B and GABAB receptors colocalize. GABAB receptors inhibit Ca2+ entry, whereas 5-HT1B receptors target SNARE complexes. We demonstrate in male and female rats that GABAB receptors alter Pr, whereas 5-HT1B receptors reduce evoked cleft glutamate concentrations, allowing differential inhibition of AMPAR and NMDAR EPSCs. This reduction in cleft glutamate concentration was confirmed by imaging glutamate release using a genetic sensor (iGluSnFR). Simulations of glutamate release and postsynaptic glutamate receptor currents were made. We tested effects of changes in vesicle numbers undergoing fusion at single synapses, relative placement of fusing vesicles and postsynaptic receptors, and the rate of release of glutamate from a fusion pore. Experimental effects of Pr changes, consistent with GABAB receptor effects, were straightforwardly represented by changes in numbers of synapses. The effects of 5-HT1B receptor-mediated inhibition are well fit by simulated modulation of the release rate of glutamate into the cleft. Colocalization of different actions of GPCRs provides synaptic integration within presynaptic terminals. Train-dependent presynaptic Ca2+ accumulation forces frequency-dependent recovery of neurotransmission during 5-HT1B receptor activation. This is consistent with competition between Ca2+-synaptotagmin and Gßγ at SNARE complexes. Thus, stimulus trains in 5-HT1B receptor agonist unveil dynamic synaptic modulation and a sophisticated hippocampal output filter that itself is modulated by colocalized GABAB receptors, which alter presynaptic Ca2+ In combination, these pathways allow complex presynaptic integration.SIGNIFICANCE STATEMENT Two G protein-coupled receptors colocalize at presynaptic sites, to mediate presynaptic modulation by Gßγ, but one (a GABAB receptor) inhibits Ca2+ entry whereas another (a 5-HT1B receptor) competes with Ca2+-synaptotagmin binding to the synaptic vesicle machinery. We have investigated downstream effects of signaling and integrative properties of these receptors. Their effects are profoundly different. GABAB receptors alter Pr leaving synaptic properties unchanged, whereas 5-HT1B receptors fundamentally change properties of synaptic transmission, modifying AMPAR but sparing NMDAR responses. Coactivation of these receptors allows synaptic integration because of convergence of GABAB receptor alteration on Ca2+ and the effect of this altered Ca2+ signal on 5-HT1B receptor signaling. This presynaptic convergence provides a novel form of synaptic integration.
Assuntos
Terminações Pré-Sinápticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transmissão Sináptica/fisiologia , Animais , Feminino , Hipocampo/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-DawleyRESUMO
The prefrontal cortex (PFC) is a cortical structure involved in a variety of complex functions in the cognitive and affective domains. The intrinsic function of the PFC is defined by the interaction of local glutamatergic and GABAergic neurons and their modulation by long-range inputs. The ensuing interactions generate a ratio of excitation and inhibition (E-I) in each output neuron, a balance which is refined during the adolescent to adult transition. In this short review, we aim to describe how an increase in GABAergic transmission during adolescence modifies the E-I ratio in adults. We further discuss how this new setpoint may change the dynamics of PFC networks observed during the transition to adulthood.
Assuntos
Córtex Pré-Frontal/fisiologia , Transmissão Sináptica/fisiologia , Adolescente , Animais , HumanosRESUMO
Increased level of kynurenic acid is thought to contribute to the development of cognitive deficits in schizophrenia through an α7nAChR-mediated mechanism in the prefrontal cortex (PFC). However, it remains unclear to what extent disruption of PFC α7nAChR signaling impacts afferent transmission and its modulation of behavior. Using male rats, we found that PFC infusion of methyllycaconitine (MLA; α7nAChR antagonist) shifts ventral hippocampal-induced local field potential (LFP) suppression to LFP facilitation, an effect only observed in adults. Hippocampal stimulation can also elicit a GluN2B-mediated LFP potentiation (when PFC GABAAR is blocked) that is insensitive to MLA. Conversely, PFC infusion of MLA diminished the gain of amygdalar transmission, which is already enabled by postnatal day (P)30. Behaviorally, the impact of prefrontal MLA on trace fear-conditioning and extinction was also age related. While freezing behavior during conditioning was reduced by MLA only in adults, it elicited opposite effects in adolescent and adult rats during extinction as revealed by the level of reduced and increased freezing response, respectively. We next asked whether the late-adolescent onset of α7nAChR modulation of hippocampal inputs contributes to the age-dependent effect of MLA during extinction. Data revealed that the increased freezing behavior elicited by MLA in adult rats could be driven by a dysregulation of the GluN2B transmission in the PFC. Collectively, these results indicate that distinct neural circuits are recruited during the extinction of trace fear memory in adolescents and adults, likely because of the late-adolescent maturation of the ventral hippocampal-PFC functional connectivity and its modulation by α7nAChR signaling.SIGNIFICANCE STATEMENT Abnormal elevation of the astrocyte-derived metabolite kynurenic acid in the prefrontal cortex (PFC) is thought to impair cognitive functions in schizophrenia through an α7nAChR-mediated mechanism. Here, we found that prefrontal α7nAChR signaling is recruited to control the gain of hippocampal and amygdalar afferent transmission in an input-specific, age-related manner during the adolescent transition to adulthood. Behaviorally, prefrontal α7nAChR modulation of trace fear memory was also age-related, likely because of the late-adolescent maturation of the ventral hippocampal pathway and its recruitment of PFC GABAergic transmission enabled by local α7nAChR signaling. Collectively, these results reveal that distinct α7nAChR-sensitive neural circuits contribute to regulate behavior responses in adolescents and adults, particularly those requiring proper integration of hippocampal and amygdalar inputs by the PFC.
Assuntos
Extinção Psicológica/fisiologia , Córtex Pré-Frontal/fisiologia , Transmissão Sináptica/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Fatores Etários , Tonsila do Cerebelo/metabolismo , Animais , Medo/fisiologia , Hipocampo/metabolismo , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologiaRESUMO
Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (â¼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.
Assuntos
Cocaína/administração & dosagem , Fissura/efeitos dos fármacos , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/metabolismo , Animais , Cálcio/metabolismo , Comportamento de Procura de Droga/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , AutoadministraçãoRESUMO
Understanding how disruption of prefrontal cortex (PFC) maturation during adolescence is crucial to reveal which neural processes could contribute to the onset of psychiatric disorders that display frontal cortical deficits. Of particular interest is the gain of GABAergic function in the PFC during adolescence and its susceptibility to the impact of transient blockade of NMDA receptor function. Here we assessed whether exposure to MK-801 during adolescence in male rats triggers a state of excitatory-inhibitory imbalance in the PFC that limits its functional capacity to regulate behavior in adulthood. Recordings from PFC brain slices revealed that MK-801 exposure during adolescence preferentially reduces the presynaptic functionality of GABAergic activity over that of excitatory synapses. As a result, an imbalance of excitatory-inhibitory synaptic activity emerges in the PFC that correlates linearly with the GABAergic deficit. Notably, the data also suggest that the diminished prefrontal GABAergic function could arise from a deficit in the recruitment of fast-spiking interneurons by excitatory inputs during adolescence. At the behavioral level, MK-801 exposure during adolescence did not disrupt the acquisition of trace fear conditioning, but markedly increased the level of freezing response during extinction testing. Infusion of the GABAA receptor-positive allosteric modulator Indiplon into the PFC before extinction testing reduced the level of freezing response in MK-801-treated rats to control levels. Collectively, the results indicate NMDA receptor signaling during adolescence enables the gain of prefrontal GABAergic function, which is required for maintaining proper excitatory-inhibitory balance in the PFC and its control of behavioral responses.SIGNIFICANCE STATEMENT A developmental disruption of prefrontal cortex maturation has been implicated in the pathophysiology of cognitive deficits in psychiatric disorders. Of particular interest is the susceptibility of the local GABAergic circuit to the impact of transient disruption of NMDA receptors. Here we found that NMDA receptor signaling is critical to enable the gain of prefrontal GABAergic transmission during adolescence for maintaining proper levels of excitatory-inhibitory balance in the PFC and its control of behavior.
Assuntos
Medo/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Animais , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacosRESUMO
BACKGROUND: Basolateral amygdalar projections to the prefrontal cortex play a key role in modulating behavioral responses to stress stimuli. Among the different neuromodulators known to impact basolateral amygdalar-prefrontal cortex transmission, the corticotrophin releasing factor (CRF) is of particular interest because of its role in modulating anxiety and stress-associated behaviors. While CRF type 1 receptor (CRFR1) has been involved in prefrontal cortex functioning, the participation of CRF type 2 receptor (CRFR2) in basolateral amygdalar-prefrontal cortex synaptic transmission remains unclear. METHODS: Immunofluorescence anatomical studies using rat prefrontal cortex synaptosomes devoid of postsynaptic elements were performed in rats with intra basolateral amygdalar injection of biotinylated dextran amine. In vivo microdialysis and local field potential recordings were used to measure glutamate extracellular levels and changes in long-term potentiation in prefrontal cortex induced by basolateral amygdalar stimulation in the absence or presence of CRF receptor antagonists. RESULTS: We found evidence for the presynaptic expression of CRFR2 protein and mRNA in prefrontal cortex synaptic terminals originated from basolateral amygdalar. By means of microdialysis and electrophysiological recordings in combination with an intra-prefrontal cortex infusion of the CRFR2 antagonist antisauvagine-30, we were able to determine that CRFR2 is functionally positioned to limit the strength of basolateral amygdalar transmission to the prefrontal cortex through presynaptic inhibition of glutamate release. CONCLUSIONS: Our study shows for the first time to our knowledge that CRFR2 is expressed in basolateral amygdalar afferents projecting to the prefrontal cortex and exerts an inhibitory control of prefrontal cortex responses to basolateral amygdalar inputs. Thus, changes in CRFR2 signaling are likely to disrupt the functional connectivity of the basolateral amygdalar-prefrontal cortex pathway and associated behavioral responses.
Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Transmissão Sináptica/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Masculino , Rede Nervosa/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismoRESUMO
Increased concentrations of kynurenic acid (KYNA) in the prefrontal cortex (PFC) are thought to contribute to the development of cognitive deficits observed in schizophrenia. Although this view is consistent with preclinical studies showing a negative impact of prefrontal KYNA elevation on executive function, the mechanism underlying such a disruption remains unclear. Here, we measured changes in local field potential (LFP) responses to ventral hippocampal stimulation in vivo and conducted whole-cell patch-clamp recordings in brain slices to reveal how nanomolar concentrations of KYNA alter synaptic transmission in the PFC of male adult rats. Our data show that prefrontal infusions of KYNA attenuated the inhibitory component of PFC LFP responses, a disruption that resulted from local blockade of α7-nicotinic acetylcholine receptors (α7nAChR). At the cellular level, we found that the inhibitory action exerted by KYNA in the PFC occurred primarily at local GABAergic synapses through an α7nAChR-dependent presynaptic mechanism. As a result, the excitatory-inhibitory ratio of synaptic transmission becomes imbalanced in a manner that correlates highly with the level of GABAergic suppression by KYNA. Finally, prefrontal infusion of a GABAAR positive allosteric modulator was sufficient to overcome the disrupting effect of KYNA and normalized the pattern of LFP inhibition in the PFC. Thus, the preferential inhibitory effect of KYNA on prefrontal GABAergic transmission could contribute to the onset of cognitive deficits observed in schizophrenia because proper GABAergic control of PFC output is one key mechanism for supporting such cortical functions.SIGNIFICANCE STATEMENT Brain kynurenic acid (KYNA) is an astrocyte-derived metabolite and its abnormal elevation in the prefrontal cortex (PFC) is thought to impair cognitive functions in individuals with schizophrenia. However, the mechanism underlying the disrupting effect of KYNA remains unclear. Here we found that KYNA biases the excitatory-inhibitory balance of prefrontal synaptic activity toward a state of disinhibition. Such disruption emerges as a result of a preferential suppression of local GABAergic transmission by KYNA via presynaptic inhibition of α7-nicotinic acetylcholine receptor signaling. Therefore, the degree of GABAergic dysregulation in the PFC could be a clinically relevant contributing factor for the onset of cognitive deficits resulting from abnormal increases of cortical KYNA.
Assuntos
Neurônios GABAérgicos/fisiologia , Ácido Cinurênico/toxicidade , Córtex Pré-Frontal/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Animais , Relação Dose-Resposta a Droga , Neurônios GABAérgicos/efeitos dos fármacos , Infusões Intraventriculares , Ácido Cinurênico/administração & dosagem , Masculino , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
The onset of motor deficits in parkinsonism is thought to result from dopamine (DA) loss-induced corticostriatal disruption and the development of excessive cortico-basal ganglia synchronization. To gain insights into the mechanisms underlying such corticostriatal dysfunction, we conducted local field potential (LFP) recordings in rats and measured how striatal manipulations of DA, cyclic guanosine monophosphate (cGMP), and gamma-aminobutyric acid- A receptor (GABA-AR) signaling impact corticostriatal transmission at specific oscillatory frequencies. Results indicate that the degree of 6-hydroxydopamine-induced DA lesion and subsequent changes in striatal DA, cGMP, and GABA-AR signaling contribute to impair LFP suppression such that the DA-depleted striatum becomes more permissive to cortically driven oscillations at 10-20 Hz, and to a lesser extent, at 40 Hz. Notably, the corticostriatal dysfunction at 40 Hz emerged only when the degree of chronic DA lesion surpassed 90%, which coincides with the appearance of severe forelimb stepping deficits. Collectively, these results indicate that several mechanisms contribute to suppress LFP within the 10-20 Hz range, yet a critical level of striatal GABAergic activity is required for sustaining corticostriatal inhibition at 40 Hz. Both the degree and chronicity of DA lesion are major contributing factors to the severity of motor and striatal GABAergic deficits that could only be reversed by strengthening local GABA-AR function.
Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Dopamina/deficiência , Transtornos Parkinsonianos/metabolismo , Animais , Ondas Encefálicas/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , GMP Cíclico/metabolismo , Membro Anterior/fisiopatologia , Masculino , Atividade Motora/fisiologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/patologia , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
Extended-access cocaine self-administration results in withdrawal-dependent incubation of cocaine craving. Rats evaluated after â¼1 month of withdrawal from such regimens ("incubated rats") exhibit changes in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) that include accumulation of Ca(2+)-permeable AMPA receptors (CP-AMPARs) and a switch in group I metabotropic glutamate receptor (mGluR)-mediated suppression of synaptic transmission from mGluR5-dependent to mGluR1-dependent. To determine the role of protein synthesis in mediating these adaptations, we conducted whole-cell patch-clamp recordings in NAc core MSNs of "incubated rats" in the presence of translational inhibitors (anisomycin, cycloheximide, rapamycin) or the transcriptional inhibitor actinomycin-D. The contribution of CP-AMPARs to synaptic transmission was determined by the rectification index and the sensitivity to the CP-AMPAR antagonist 1-naphthyl acetyl spermine. We found that CP-AMPAR-mediated transmission in the NAc of "incubated rats" was reduced to levels comparable to those found in saline control rats when brain slices were treated with translational inhibitors, whereas actinomycin-D had no effect. We also investigated the effect of protein translation inhibitors on the switch of mGluR function in MSNs of "incubated rats" using the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine in combination with either an mGluR1 (LY367385) or an mGluR5 (3-[(2-methyl-4-thiazolyl)ethynyl]pyridine) antagonist. Data revealed that inhibition of protein translation eliminated the mGluR1-mediated inhibition and restored the mGluR5 responsiveness to a state functionally similar to that of saline control rats. Together, these results suggest that aberrant regulation of local protein synthesis contributes to the maintenance of adaptations accrued at NAc MSN synapses during incubation of cocaine craving.
Assuntos
Cálcio/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Núcleo Accumbens/fisiologia , Biossíntese de Proteínas/fisiologia , Receptores de AMPA/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Benzoatos/farmacologia , Cicloeximida/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Técnicas de Patch-Clamp , Inibidores da Síntese de Proteínas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Autoadministração , Tiazóis/farmacologia , Área Tegmentar Ventral/fisiologiaRESUMO
The adolescent susceptibility to the onset of psychiatric disorders is only beginning to be understood when factoring in the development of the prefrontal cortex (PFC). The functional maturation of the PFC is dependent upon proper integration of glutamatergic inputs from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA). Here we assessed how transient NMDAR blockade during adolescence alters the functional interaction of vHipp-BLA inputs in regulating PFC plasticity. Local field potential recordings were used to determine changes in long-term depression (LTD) and long-term potentiation (LTP) of PFC responses resulting from vHipp and BLA high-frequency stimulation in adult rats that received repeated injections of saline or the NMDAR antagonist MK-801 from postnatal day 35 (P35) to P40. We found that early adolescent MK-801 exposure elicited an age- and input-specific dysregulation of vHipp-PFC plasticity, characterized by a shift from LTD to LTP without altering the BLA-induced LTP. Data also showed that the vHipp normally resets the LTP state of BLA transmission; however, this inhibitory regulation is absent following early adolescent MK-801 treatment. This deficit was reminiscent of PFC responses seen in drug-naive juveniles. Notably, local prefrontal upregulation of GABAAα1 function completely restored vHipp functionality and its regulation of BLA plasticity in MK-801-treated rats. Thus, NMDAR signaling is critical for the periadolescent acquisition of a GABA-dependent hippocampal control of PFC plasticity, which enables the inhibitory control of the prefrontal output by the vHipp. A dysregulation of this pathway can alter PFC processing of other converging afferents such as those from the BLA.
Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Maleato de Dizocilpina/toxicidade , Antagonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Fatores Etários , Tonsila do Cerebelo/fisiopatologia , Animais , Benzodiazepinas/farmacologia , Estimulação Elétrica , Hipocampo/fisiopatologia , Interneurônios/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Picrotoxina/farmacologia , Córtex Pré-Frontal/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Tiofenos/farmacologia , Regulação para CimaRESUMO
A developmental disruption of prefrontal cortical inhibitory circuits is thought to contribute to the adolescent onset of cognitive deficits observed in schizophrenia. However, the developmental mechanisms underlying such a disruption remain elusive. The goal of this study is to examine how repeated exposure to the NMDA receptor antagonist dizocilpine maleate (MK-801) during periadolescence [from postnatal day 35 (P35) to P40] impacts the normative development of local prefrontal network response in rats. In vivo electrophysiological analyses revealed that MK-801 administration during periadolescence elicits an enduring disinhibited prefrontal local field potential (LFP) response to ventral hippocampal stimulation at 20 Hz (beta) and 40 Hz (gamma) in adulthood (P65-P85). Such a disinhibition was not observed when MK-801 was given during adulthood, indicating that the periadolescent transition is indeed a sensitive period for the functional maturation of prefrontal inhibitory control. Accordingly, the pattern of prefrontal LFP disinhibition induced by periadolescent MK-801 treatment resembles that observed in the normal P30-P40 prefrontal cortex (PFC). Additional pharmacological manipulations revealed that these developmentally immature prefrontal responses can be mimicked by single microinfusion of the GABA(A) receptor antagonist picrotoxin into the normal adult PFC. Importantly, acute administration of the GABA(A)-positive allosteric modulator Indiplon into the PFC reversed the prefrontal disinhibitory state induced by periadolescent MK-801 to normal levels. Together, these results indicate a critical role of NMDA receptors in regulating the periadolescent maturation of GABAergic networks in the PFC and that pharmacologically induced augmentation of local GABA(A)-receptor-mediated transmission is sufficient to overcome the disinhibitory prefrontal state associated with the periadolescent MK-801 exposure.
Assuntos
Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Rede Nervosa/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Estimulação Elétrica , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Transmissão Sináptica/efeitos dos fármacosRESUMO
We examined the structural plasticity of excitatory synapses from corticostriatal and thalamostriatal pathways and their postsynaptic targets in adult Sprague-Dawley rats to understand how these striatal circuits change in l-DOPA-induced dyskinesias (LIDs). We present here detailed electron and light microscopic analyses that provide new insight into the nature of the structural and synaptic remodeling of medium spiny neurons in response to LIDs. Numerous studies have implicated enhanced glutamate signaling and persistent long-term potentiation as central to the behavioral sensitization phenomenon of LIDs. Moreover, experience-dependent alterations in behavior are thought to involve structural modifications, specifically alterations in patterns of synaptic connectivity. Thus, we hypothesized that in the striatum of rats with LIDs, one of two major glutamatergic pathways would form new or altered contacts, especially onto the spines of medium spiny neuron (MSNs). Our data provide compelling evidence for a dramatic rewiring of the striatum of dyskinetic rats and that this rewiring involves corticostriatal but not thalamostriatal contacts onto MSNs. There is a dramatic increase in corticostriatal contacts onto spines and dendrites that appear to be directly linked to dyskinetic behaviors, since they were not seen in the striatum of animals that did not develop dyskinesia. There is also an aberrant increase in spines receiving more than one excitatory contact(i.e., multisynaptic spines) in the dyskinetic animals compared with the 6-hydroxydopamine-treated and control rats. Such alterations could substantially impair the ability of striatal neurons to gate cortically driven signals and contribute to the loss of bidirectional synaptic plasticity.
Assuntos
Córtex Cerebral/patologia , Corpo Estriado/patologia , Espinhas Dendríticas/patologia , Discinesia Induzida por Medicamentos/patologia , Sinapses/patologia , Tálamo , Animais , Córtex Cerebral/ultraestrutura , Corpo Estriado/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Levodopa/toxicidade , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Tálamo/patologia , Tálamo/ultraestruturaRESUMO
Relapse to cocaine use after prolonged abstinence is an important clinical problem. This relapse is often induced by exposure to cues associated with cocaine use. To account for the persistent propensity for relapse, it has been suggested that cue-induced cocaine craving increases over the first several weeks of abstinence and remains high for extended periods. We and others identified an analogous phenomenon in rats that was termed 'incubation of cocaine craving': time-dependent increases in cue-induced cocaine-seeking over the first months after withdrawal from self-administered cocaine. Cocaine-seeking requires the activation of glutamate projections that excite receptors for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in the nucleus accumbens. Here we show that the number of synaptic AMPA receptors in the accumbens is increased after prolonged withdrawal from cocaine self-administration by the addition of new AMPA receptors lacking glutamate receptor 2 (GluR2). Furthermore, we show that these new receptors mediate the incubation of cocaine craving. Our results indicate that GluR2-lacking AMPA receptors could be a new target for drug development for the treatment of cocaine addiction. We propose that after prolonged withdrawal from cocaine, increased numbers of synaptic AMPA receptors combined with the higher conductance of GluR2-lacking AMPA receptors causes increased reactivity of accumbens neurons to cocaine-related cues, leading to an intensification of drug craving and relapse.
Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína , Núcleo Accumbens/metabolismo , Receptores de AMPA/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Sinais (Psicologia) , Regulação da Expressão Gênica , Masculino , Núcleo Accumbens/fisiopatologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptores de AMPA/deficiência , Receptores de AMPA/genética , Autoadministração , Fatores de TempoRESUMO
Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3, APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic, and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice have lower synaptic activity, but higher levels of paired-pulse facilitation (PPF) and long-term potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high-frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype, and angiotensin II in AD.
Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Humanos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Angiotensina II/farmacologia , Apolipoproteína E3/genética , Camundongos Transgênicos , Apolipoproteínas E/genética , Doença de Alzheimer/metabolismo , Potenciação de Longa DuraçãoRESUMO
Prefrontal cortex (PFC) maturation during adolescence is characterized by structural and functional changes, which involve the remodeling of GABA and glutamatergic synapses, as well as changes in the endocannabinoid system. Yet, the way PFC endocannabinoid signaling interacts with local GABA and glutamatergic function to impact its processing of afferent transmission during the adolescent transition to adulthood remains unknown. Here we combined PFC local field potential recordings with local manipulations of 2-AG and anandamide levels to assess how PFC endocannabinoid signaling is recruited to modulate ventral hippocampal and basolateral amygdalar inputs in vivo in adolescent and adult male rats. We found that the PFC endocannabinoid signaling does not fully emerge until late-adolescence/young adulthood. Once present, both 2-AG and anandamide can be recruited in the PFC to limit the impact of hippocampal drive through a CB1R-mediated mechanism whereas basolateral amygdalar inputs are only inhibited by 2-AG. Similarly, the behavioral effects of increasing 2-AG and anandamide in the PFC do not emerge until late-adolescence/young adulthood. Using a trace fear conditioning paradigm, we found that elevating PFC 2-AG levels preferentially reduced freezing behavior during acquisition without affecting its extinction. In contrast, increasing anandamide levels in the PFC selectively disrupted the extinction of trace fear memory without affecting its acquisition. Collectively, these results indicate a protracted recruitment of PFC endocannabinoid signaling, which becomes online in late adolescence/young adulthood as revealed by its impact on hippocampal and amygdalar-evoked local field potential responses and trace fear memory behavior.
Assuntos
Tonsila do Cerebelo , Endocanabinoides , Medo , Hipocampo , Córtex Pré-Frontal , Animais , Endocanabinoides/metabolismo , Endocanabinoides/fisiologia , Medo/fisiologia , Medo/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Ratos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Ratos Sprague-Dawley , Alcamidas Poli-Insaturadas/metabolismo , Condicionamento Clássico/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Ácidos Araquidônicos/metabolismoRESUMO
Chronic exposure to nicotine results in the development of a dependent state such that a withdrawal syndrome is elicited upon cessation of nicotine. The habenulo-interpeduncular (Hb-IPN) circuit contains a high concentration of nAChRs and has been identified as a main circuit involved in nicotine withdrawal. Here we investigated the contribution of two distinct subpopulations of IPN GABAergic neurons to nicotine withdrawal behaviors. Using a chemogenetic approach to specifically target Amigo1-expressing or Epyc-expressing neurons within the IPN, we found that activity of the Amigo1 and not the Epyc subpopulation of GABAergic neurons is critical for anxiety-like behaviors both in naïve mice and in those undergoing nicotine withdrawal. Moreover, data revealed that stimulation of Amigo1 neurons in nicotine-naïve mice elicits opposite effects on affective and somatic signs of withdrawal. Taken together, these results suggest that somatic and affective behaviors constitute dissociable components of the nicotine withdrawal phenotype and are likely supported by distinct subpopulations of neurons within the IPN.
RESUMO
Animal studies have highlighted the role of the ventral hippocampus-prefrontal cortex pathway in the acquisition of mature cortical function through refinement of GABAergic circuits during adolescence. Inhibitory GABAergic responses are mediated by highly specialized interneurons, which have distinct functional properties and are characterized by the expression of calcium binding proteins. Among these, we recently found that parvalbumin (PV)- and calretinin (CR)-positive interneurons in the prefrontal cortex follow opposite developmental trajectories during the periadolescent transition period. In the present study, we asked whether interneurons expressing PV and CR in the ventral hippocampus follow similar periadolescent trajectories as seen in the prefrontal cortex. By measuring the relative abundance of these interneurons in three age groups (postnatal days (PD) 25-40, 45-55, and 60-85), we found that regions within the dorso-ventral axis of the ventral hippocampus undergo distinct developmental trajectories in PV expression during the periadolescent transition. Specifically, the ventral subiculum displayed a dramatic increase in PV-positive interneurons from PD25-40 to PD45-55 with an increasing rostro-caudal gradient, whereas negligible changes were found in the dorsal and middle regions. In contrast, the number of CR-positive interneurons in the ventral hippocampus remained unchanged across the three age groups studied. Together, these results describe for the first time that GABAergic circuits in the ventral hippocampus undergo protracted development during adolescence, in particular the PV-positive cell population circumscribed to the ventral region of the ventral hippocampus.
Assuntos
Calbindina 2/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , Regulação para Cima/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3 , APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice had lower basal synaptic activity, but higher levels of paired pulse facilitation (PPF) and Long-Term Potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype and angiotensin II in AD.