Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Carcinog ; 56(9): 2035-2047, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28383782

RESUMO

Accumulating evidence suggests that human hepatocellular carcinoma (HCC) can be derived from cancer stem cells (CSCs), which contribute to tumor initiation, metastasis, chemoresistance, and recurrence. A great variety of HCC CSCs resulting in diverse clinical manifestations have been reported. However, how CSC diversity is regulated and generated remains unclear. Here we report that the miR-200b-ZEB1 circuit is closely involved with the induction and maintenance of a diverse group of CSCs. We found that miR-200b downregulation occurred in early HCC and associated with poor prognosis. The downregulation was attributable to genome deletion and promoter methylation of the miR-200a/b/429 gene. Ectopic expression of miR-200b or silencing of ZEB1 led to a decrease in CD13+ and CD24+ HCC CSCs and an increase in EpCAM+ HCC CSCs. Mechanistically, miR-200b directly suppressed BMI1 and ZEB1 expressions. ZEB1 recognized promoters of CD13, CD24, and EpCAM genes resulting in CD13 and CD24 upregulation and EpCAM downregulation. Neither miR-200b nor ZEB1 had obvious effects on CD133 or CD90 expression. Silencing CD13 or CD24 expression suppressed tumorigenicity of HCC cells. Ectopic expression of CD24 reversed the suppression of tumorigenicity by ectopic expression of miR-200b. Clinically, miR-200b downregulation was coupled with ZEB1 upregulation in approximately two-thirds of HCC patients. ZEB1 expression was positively correlated with CD13 and CD24 expressions in HCCs, while miR-200b expression was positively correlated with EpCAM. Our findings suggest that the miR-200b-ZEB1 circuit is a master regulator of diverse stemness of HCC, which differentiates HCCs into those containing CD13+ /CD24+ CSCs from those containing EpCAM+ CSCs.


Assuntos
Carcinoma Hepatocelular/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Antígenos de Diferenciação/metabolismo , Antígenos CD13/metabolismo , Antígeno CD24/metabolismo , Carcinoma Hepatocelular/genética , Diferenciação Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Metilação de DNA , DNA de Neoplasias/metabolismo , Regulação para Baixo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/microbiologia , Regiões Promotoras Genéticas
2.
Front Cell Dev Biol ; 8: 553444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224943

RESUMO

Mesenchymal stromal cells (MSC) hold great promise for tissue engineering and cell-based therapies due to their multilineage differentiation potential and intrinsic immunomodulatory and trophic activities. Over the past years, increasing evidence has proposed extracellular vesicles (EVs) as mediators of many of the MSC-associated therapeutic features. EVs have emerged as mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. EVs are derived from cell membranes, allowing high biocompatibility to target cells, while their small size makes them ideal candidates to cross biological barriers. Despite the promising potential of EVs for therapeutic applications, robust manufacturing processes that would increase the consistency and scalability of EV production are still lacking. In this work, EVs were produced by MSC isolated from different human tissue sources [bone marrow (BM), adipose tissue (AT), and umbilical cord matrix (UCM)]. A serum-/xeno-free microcarrier-based culture system was implemented in a Vertical-WheelTM bioreactor (VWBR), employing a human platelet lysate culture supplement (UltraGROTM-PURE), toward the scalable production of MSC-derived EVs (MSC-EVs). The morphology and structure of the manufactured EVs were assessed by atomic force microscopy, while EV protein markers were successfully identified in EVs by Western blot, and EV surface charge was maintained relatively constant (between -15.5 ± 1.6 mV and -19.4 ± 1.4 mV), as determined by zeta potential measurements. When compared to traditional culture systems under static conditions (T-flasks), the VWBR system allowed the production of EVs at higher concentration (i.e., EV concentration in the conditioned medium) (5.7-fold increase overall) and productivity (i.e., amount of EVs generated per cell) (3-fold increase overall). BM, AT and UCM MSC cultured in the VWBR system yielded an average of 2.8 ± 0.1 × 1011, 3.1 ± 1.3 × 1011, and 4.1 ± 1.7 × 1011 EV particles (n = 3), respectively, in a 60 mL final volume. This bioreactor system also allowed to obtain a more robust MSC-EV production, regarding their purity, compared to static culture. Overall, we demonstrate that this scalable culture system can robustly manufacture EVs from MSC derived from different tissue sources, toward the development of novel therapeutic products.

3.
Biotechnol J ; 14(8): e1800716, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30945467

RESUMO

Mesenchymal stromal cells (MSC) hold great promise for tissue engineering applications and cell-based therapies. Large cell doses (>1 × 106 cells kg-1 ) and Good Manufacturing Practices (GMP)-compliant processes are however required for clinical purposes. Here, a serum- and xenogeneic-free (S/XF) microcarrier-based culture system is established for the expansion of human umbilical cord matrix (UCM)- and adipose tissue (AT)-derived MSC using the Vertical-Wheel system (PBS-0.1 MAG; PBS Biotech). UCM and AT MSC are expanded to maximum cell densities of 5.3 ± 0.4 × 105 cell mL-1 (n = 3) and 3.6 ± 0.7 × 105 cell mL-1 (n = 3), respectively, after 7 days of culture, while maintaining their identity, according to standard criteria. An economic evaluation of the process transfer from T-flasks to PBS-0.1 MAG shows a reduction in the costs associated with the production of a dose for an average 70 kg adult patient (i.e., 70 million cells). Costs decrease from $17.0 K to $11.1 K for UCM MSC and from $21.5 K to $11.1 K for AT MSC, proving that the transition to Vertical-Wheel reactors provides a cost-effective alternative for MSC expansion. The present work reports the establishment of a scalable and cost-effective culture platform for the manufacturing of UCM and AT MSC in a S/XF microcarrier-based system.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/instrumentação , Células-Tronco Mesenquimais , Técnicas de Cultura de Células/métodos , Humanos
4.
Mech Dev ; 122(7-8): 887-99, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15923112

RESUMO

The paired-domain-containing Pax transcription factors play an important role in the development of a range of organ, tissue and cell types. Although DNA binding elements and target genes for Pax proteins have been identified, how these proteins identify appropriate DNA elements and regulate different genes in different cellular contexts is not well understood. To investigate the relationship between Pax proteins and their targets, we have studied the in vivo and in vitro properties associated with wild-type and different mutant variants of the Caenorhabditis elegans Pax protein EGL-38. Here, we characterize the properties of four mutations that result in an amino acid substitution in the DNA binding domain of EGL-38. We find that animals bearing the different mutant alleles exhibit tissue-preferential defects in egl-38 function. The mutant proteins are also altered in their activity in an ectopic expression assay and in their in vitro DNA binding properties. Using in vitro selection, we have identified binding sites for EGL-38. However, we show that selected sites function poorly in vivo as EGL-38 response elements, indicating that sequence features in addition to DNA binding determine the efficacy of Pax response elements. The distinction between DNA binding and activity is consistent with the model that other factors commonly play a role in mediating Pax protein target site selection and function in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Dados de Sequência Molecular , Mutação/genética , Alinhamento de Sequência , Fatores de Transcrição/genética
6.
Mol Genet Genomics ; 278(5): 507-18, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17618463

RESUMO

In many organisms, repetitive DNA serves as a trigger for gene silencing. However, some gene expression is observed from repetitive genomic regions such as heterochromatin, suggesting mechanisms exist to modulate the silencing effects. From a genetic screen in C. elegans, we have identified mutations in two genes important for expression of repetitive sequences: lex-1 and tam-1. Here we show that lex-1 encodes a protein containing an ATPase domain and a bromodomain. LEX-1 is similar to the yeast Yta7 protein, which maintains boundaries between silenced and active chromatin. tam-1 has previously been shown to encode a RING finger/B-box protein that modulates gene expression from repetitive DNA. We find that lex-1, like tam-1, acts as a class B synthetic multivulva (synMuv) gene. However, since lex-1 and tam-1 mutants have normal P granule localization, it suggests they act through a mechanism distinct from other class B synMuvs. We observe intragenic (interallelic) complementation with lex-1 and a genetic interaction between lex-1 and tam-1, data consistent with the idea that the gene products function in the same biological process, perhaps as part of a protein complex. We propose that LEX-1 and TAM-1 function together to influence chromatin structure and to promote expression from repetitive sequences.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica , Proteínas Nucleares/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas de Ciclo Celular , Clonagem Molecular , DNA/metabolismo , Inativação Gênica , Heterozigoto , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fenótipo , Recombinação Genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA